Skip to main content

Advertisement

Log in

Energetics of graphene origami and their “spatial resolution”

  • Impact Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The extreme thinness of graphene combined with its tensile strength made it a material appealing for discussing and even making complex cut-kirigami or folded-only origami. In the case of origami, its stability is mainly defined by the positive energy of the single- or double-fold curvature deformation counterbalanced by the energy reduction due to favorable van der Waals contacts. These opposite sign contributions also have notably different scaling with the size L of the construction, the contacts contributing in proportion to area ~ L2, single folds as ~ L, and highly strained double-fold corners as only ~ L0 = const. Computational analysis with realistic atomistic-elastic representation of graphene allows one to quantify these energy contributions and to establish the length scale, where a single fold is favored (7 nm < L < 21 nm) or a double fold becomes sustainable (L > 21 nm), defining the size of the smallest possible complex origami designs as L ≫ 21 nm.

Impact statement

The flexibility and foldability of graphene are some of its attractive properties inspiring the designs of origami structures with potential use in flexible electronics and electromechanical nanodevices. The aesthetics, precision, and ease of folding and stability, however, have limitations at the nanoscale. Here, by means of large-scale atomistic calculations and continuum models, it is quantified how the dimensions determine the relative robustness of the elementary folds of graphene (a single fold and a double-folded graphene forming a single order-four vertex), thereby mapping the spatial resolution limits and providing important guidance for graphene nano-origami realizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. K.N. Kudin, G.E. Scuseria, B.I. Yakobson, C2F, BN, and C nanoshell elasticity from Ab Initio computations. Phys. Rev. B 64(23), 235406 (2001)

    Article  Google Scholar 

  2. B.I. Yakobson, C.J. Brabec, J. Bernholc, Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76(14), 2511 (1996)

    Article  CAS  Google Scholar 

  3. B.I. Yakobson, R.E. Smalley, Fullerene nanotubes: C1,000,000 and beyond. Am. Sci. 85(4), 324 (1997)

    Google Scholar 

  4. T. Dumitrica, M. Hua, B.I. Yakobson, Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. Proc. Natl. Acad. Sci. U.S.A. 103(16), 6105 (2006)

    Article  CAS  Google Scholar 

  5. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385 (2008)

    Article  CAS  Google Scholar 

  6. F. Liu, P. Ming, J. Li, Ab Initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 76(6), 064120 (2007)

    Article  Google Scholar 

  7. A. Fasolino, J.H. Los, M.I. Katsnelson, Intrinsic ripples in graphene. Nat. Mater. 6(11), 858 (2007)

    Article  CAS  Google Scholar 

  8. E. Muñoz, A.K. Singh, M.A. Ribas, E.S. Penev, B.I. Yakobson, The ultimate diamond slab: GraphAne versus GraphEne. Diam. Rel. Mater. 19(5–6), 368 (2010)

    Article  Google Scholar 

  9. B. Treml, A. Gillman, P. Buskohl, R. Vaia, Origami mechanologic. Proc. Natl. Acad. Sci. U.S.A. 115(27), 6916 (2018)

    Article  CAS  Google Scholar 

  10. A.L. Vázquez de Parga, F. Calleja, B. Borca, M.C.G. Passeggi, J.J. Hinarejos, F. Guinea, R. Miranda, Periodically rippled graphene: growth and spatially resolved electronic structure. Phys. Rev. Lett. 100(5), 056807 (2008)

    Article  Google Scholar 

  11. M.K. Blees, A.W. Barnard, P.A. Rose, S.P. Roberts, K.L. McGill, P.Y. Huang, A.R. Ruyack, J.W. Kevek, B. Kobrin, D.A. Muller, P.L. McEuen, Graphene Kirigami. Nature 524(7564), 204 (2015)

    Article  CAS  Google Scholar 

  12. J.Y. Huang, F. Ding, B.I. Yakobson, P. Lu, L. Qi, J. Li, In situ observation of graphene sublimation and multi-layer edge reconstructions. Proc. Natl. Acad. Sci. U.S.A. 106(25), 10103 (2009)

    Article  CAS  Google Scholar 

  13. A.K. Singh, E.S. Penev, B.I. Yakobson, Armchair or zigzag? A tool for characterizing graphene edge. Comput. Phys. Comm. 182, 804 (2011)

    Article  CAS  Google Scholar 

  14. L.D. Landau, E.M. Lifshitz, Theory of Elasticity, 3rd ed.; Course of theoretical physics (Elsevier: Amsterdam, 1986, vol. 7).

  15. S. Waitukaitis, R. Menaut, B.G. Chen, M. van Hecke, Origami multistability: from single vertices to metasheets. Phys. Rev. Lett. 114(5), 055503 (2015)

    Article  Google Scholar 

  16. T. Hull, On the mathematics of flat origamis. Congressus Numerantium 100, 215 (1994)

    Google Scholar 

  17. M. Bern, B. Hayes, The Complexity of Flat Origami, Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 96, 175 (1996).

  18. M. Arroyo, T. Belytschko, Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born Rule. Phys. Rev. B 69(11), 115415 (2004)

    Article  Google Scholar 

  19. J. Tersoff, Energies of fullerenes. Phys. Rev. B 46(23), 15546 (1992)

    Article  CAS  Google Scholar 

  20. Z. Tu, Z. Ou-Yang, Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number. Phys. Rev. B 65(23), 233407 (2002)

    Article  Google Scholar 

  21. I.V. Lebedeva, A.S. Minkin, A.M. Popov, A.A. Knizhnik, Elastic constants of graphene: comparison of empirical potentials and DFT calculations. Physica E 108, 326 (2019)

    Article  CAS  Google Scholar 

  22. Z. Xu, M.J. Buehler, Geometry controls conformation of graphene sheets: membranes, ribbons, and scrolls. ACS Nano 4(7), 3869 (2010)

    Article  CAS  Google Scholar 

  23. B. Sajadi, S. van Hemert, B. Arash, P. Belardinelli, P.G. Steeneken, F. Alijani, Size- and temperature-dependent bending rigidity of graphene using modal analysis. Carbon 139, 334 (2018)

    Article  CAS  Google Scholar 

  24. H. Chen, X.-L. Zhang, Y.-Y. Zhang, D. Wang, D.-L. Bao, Y. Que, W. Xiao, S. Du, M. Ouyang, S.T. Pantelides, H.-J. Gao, Atomically precise, custom-design origami graphene nanostructures. Science 365(6457), 1036 (2019)

    Article  CAS  Google Scholar 

  25. O.-K. Park, C.S. Tiwary, Y. Yang, S. Bhowmick, S. Vinod, Q. Zhang, V.L. Colvin, S.A. Syed Asif, R. Vajtai, E.S. Penev, B.I. Yakobson, P.M. Ajayan, Magnetic field controlled graphene oxide-based origami with enhanced surface area and mechanical properties. Nanoscale 9 (21), 6991 (2017).

  26. Y. Wang, S. Wang, P. Li, S. Rajendran, Z. Xu, S. Liu, F. Guo, Y. He, Z. Li, Z. Xu, C. Gao, Conformational phase map of two-dimensional macromolecular graphene oxide in solution. Matter 3(1), 230 (2020)

    Article  Google Scholar 

  27. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1 (1995)

    Article  CAS  Google Scholar 

  28. S.J. Stuart, A.B. Tutein, J.A.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112(14), 6472 (2000)

    Article  CAS  Google Scholar 

  29. Q. Lu, M. Arroyo, R. Huang, Elastic bending modulus of monolayer graphene. J. Phys. D 42(10), 102002 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the US Department of Defense: Air Force Office of Scientific Research (AFOSR), Grant #FA9550-17-1-0262. Z.Z. and Z.H. at NUAA were supported by the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (No. MCMS-E-0420K01). Computer resources were provided by XSEDE, which is supported by National Science Foundation (NSF) Grant #OCI-1053575, under allocation TG-DMR100029, and the NOTS cluster at Rice University acquired with funds from NSF Grant #CNS-1338099.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris I. Yakobson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhang, Z., Hu, Z. et al. Energetics of graphene origami and their “spatial resolution”. MRS Bulletin 46, 481–486 (2021). https://doi.org/10.1557/s43577-020-00018-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-020-00018-8

Keywords

Navigation