Skip to main content
Log in

The Properties of Dual Acceptor Delta-Doped ZnO Thin Films

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We report the investigation of ZnO thin films delta-doped with lithium and phosphorus introduced simultaneously. The films were deposited from high purity ceramic targets of ZnO and Li3PO4 on c-plane sapphire substrates by RF magnetron sputtering. An undoped ZnO film with a low background electron concentration was used as the buffer layer on the sapphire substrate. The doped films were prepared by carrying simultaneous sputtering from the ZnO and Li3PO4 ceramic targets. For uniform doped films, the simultaneous deposition from the ZnO and Li3PO4 was uninterrupted. For the delta-doped films on the other hand, deposition from the ZnO target was uninterrupted while that from the Li3PO4 was interrupted periodically using a shutter. Post-deposition annealing was carried using a rapid thermal processor in O2 at 900 oC for 3 min. Results obtained from photoluminescence spectroscopy measurements at 12 K revealed acceptor-related luminescence peaks at 3.35 eV, possibly due to the transition from exciton bound to a neutral acceptor. The x-ray diffraction 2θ-scans showed a single peak at about 34.4o. Hall effect measurements revealed p-type conductivities with an average Hall concentrations of 3.8 x 1013 cm-3 in uniform doped samples and 1.5 x 1016 cm-3 in delta doped samples. However, in some cases the Hall coefficients had both positive and negative values, making the determination of the carrier type inconclusive. The fluctuation in the carrier type could be due to the lateral inhomogeneity in the hole concentration caused by signal noise impacting the small Hall voltages in the measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).

    Article  Google Scholar 

  2. X. Y. Duan, R. H. Yao and Y. J. Zhao. Appl. Phys. A 91, 467 (2008).

    Article  CAS  Google Scholar 

  3. A. Janotti and C. G. Van deWalle, Phys. Rev. B 75, 165202 (2007).

    Article  Google Scholar 

  4. J. L. Lyons, A. Janotti, and C. G. Van de Walle, Appl. Phys. Lett. 95, 252105 (2009).

    Article  Google Scholar 

  5. J. G. Reynolds, C. L. Reynolds, A. Mohanta, J. F. Muth, J. E. Rowe, H. O. Everitt and D. E. Aspnes, Appl. Phys. Lett. 102, 152114 (2013).

    Article  Google Scholar 

  6. D.C. Look, G.M. Renlund, R.H. Burgener II, and J.R. Sizelove, Appl. Phys. Lett. 85, 5269 (2004).

    Article  CAS  Google Scholar 

  7. S. Limpinumnong, M.F. Smith, and S.B. Zhang, Appl. Phys. Lett. 89, 222113 (2006).

    Article  Google Scholar 

  8. W.J. Lee, J. Kang, and K.J. Chang, Phys. Rev. B 73, 024117 (2006).

    Article  Google Scholar 

  9. E.-C. Lee and K.J. Chang, Phys. B 376–377, 707 (2006).

    Article  Google Scholar 

  10. M.D. McCluskey and S.J. Jokela, J. Appl. Phys. 106, 071101 (2009).

    Article  Google Scholar 

  11. V. Avrutin, D.J. Silversmith, and H. Morkoç, Proc. IEEE Inst. Electr. Electron. Eng. 98, 1269 (2010).

    Article  CAS  Google Scholar 

  12. L.S. Vlasenko and G.D. Watkins, Phys. Rev. B 72, 035203 (2005).

    Article  Google Scholar 

  13. T. Yamamoto, Phys. Status Solidi A 193, 423 (2002).

    Article  CAS  Google Scholar 

  14. R.Y. Tian and Y.J. Zhao, J. Appl. Phys. 106, 043707 (2009).

    Article  Google Scholar 

  15. J.G. Lu, Y.Z. Zhang, Z.Z. Ye, L.P. Zhu, L. Wang, B.H. Zhao and Q.L. Liang, Appl. Phys. Lett. 88, 222114 (2006).

    Article  Google Scholar 

  16. T. N. Oder, A. Smith, M. Freeman, M. McMaster, B. Cai and M. L. Nakarmi, J. Electron. Mater. 43(5) 1370–78 (2014).

  17. E.F. Schubert, J. Vacuum Sci. Technol A 8(3) 2980–2996 (1990).

  18. J.J. Harris, Journal of materials science: materials in electronics 4, 93–105(1993).

  19. M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, Phys. Lett 82 3041 (2003).

    CAS  Google Scholar 

  20. H. D. Jung, C. D. Song, S. Q. Wang, K. Arai, Y. H. Wu, Z. Zhu, and T. Yao, Appl. Phys. Lett. 70, 1143 (1997).

    Article  CAS  Google Scholar 

  21. T.N. Oder, M. McMaster, A. Smith, N. Velpukonda, and D. Sternagle, Mater. Res. Soc. Proc. 1394, mrsf111394m1322 (2012).

  22. T.N. Oder, A. Smith, M. Freeman, M. McMaster, B. Cai, and M.L. Nakarmi, MRS Proc. 1494, mrsf12-1494-z04-48 (2013).

  23. Y. C. Lee, S. Y. Hu, W. Water, K. K. Tiong, Z. C. Feng, Y. T. Chen, J. C. Huang, J. W. Lee, C. C. Huang, J. L. Shen, M. H. Cheng; J. Limin. 129, 148 (2009).

    Article  CAS  Google Scholar 

  24. P. Sagar, P. K. Shishodia, R. M. Mehra, H. Okada, A. Wakahara, A. Yoshida, J. Lumin. 126, 800 (2007).

    Article  CAS  Google Scholar 

  25. M. L. Cui, X. M. Wu, L. J. Zhuge, Y. D. Meng, Vacuum 81, 899 (2007).

    Article  CAS  Google Scholar 

  26. X. Qin, J. Wang, J. Xie, F. Li, L. Wen and X. Wang, Bull. Mater. Sci. 31(4), 681–686 (2008).

  27. C. G. Van de Walle, Phys. Status Solidi B 235, 89 (2003).

    Article  Google Scholar 

  28. J. Gutowski, N. Presser, and I Broser, Phys. Rev. B 38, 9746 (1988).

    Article  CAS  Google Scholar 

  29. D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oder, T.N., Gade, R.C. & Merlo, C. The Properties of Dual Acceptor Delta-Doped ZnO Thin Films. MRS Online Proceedings Library 1805, 975 (2015). https://doi.org/10.1557/opl.2015.701

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2015.701

Navigation