Skip to main content
Log in

Fluorescent Rosette Nanotubes from the C-analogue of the Guanine–Cytosine (G∧C) Motif

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Rosette nanotubes (RNTs) are tubular architectures generated through the hierarchical self-assembly of the guanine-cytosine (G∧C) motif1 or2 (Figure 1). Motif2 differs from1 by the substitution at the N-atom in the G-ring with a C-atom as shown in red. In this paper, we prepare a new tricyclic G∧C base3 from a functionalized derivative of2 and demonstrate its self-assembly into fluorescent helical RNTs inN, N-dimethylformamide (DMF). The self-assembly and fluorescent properties of RNTs3 were established using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-visible spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Chen, Pharmaceut Anal Acta 3: e136. doi:10.4172/2153–2435.1000e136.

  2. Z. Liu, J. T. Robinson, S. M. Tabakmanb, K. Yanga, and H. Dai, Mater. Today 14, 316 (2011).

    Article  CAS  Google Scholar 

  3. N. M. Iverson, P. W. Barone, M. Shandell, L. J. Trudel, S. Sen, F. Sen, V. Ivanov, E. Atolia, E. Farias, T. P. McNicholas, N. Reuel, N. M. A. Parry, G. N. Wogan and M. S. Strano, Nat. Nanotechnol 8, 873 (2013).

    Article  CAS  Google Scholar 

  4. S. Vardharajula, S. Z Ali, P. M Tiwari, E. Eroglu, K. Vig, V. A Dennis, S. R Singh, Int. J. Nanomedicine 7, 5361 (2012).

    CAS  Google Scholar 

  5. A. A. Hariri, G. D. Hamblin, Y. Gidi, H. F. Sleiman and G. Cosa, Nature Chem. 7, 295 (2015).

    Article  CAS  Google Scholar 

  6. Y. Zhou, M. Kogiso, C. He, Y. Shimizu, N. Koshizaki, and T. Shimizu, Adv. Mater. 19, 1055 (2007).

    Article  CAS  Google Scholar 

  7. J. Montenegro, C. Vázquez-Vázquez, A. Kalinin, K. E. Geckeler and J. R. Granja, J. Am. Chem. Soc. 136, 2484 (2014).

    Article  CAS  Google Scholar 

  8. R. L. Beingessner, B.-L. Deng, P. E. Fanwick and H. Fenniri, J. Org. Chem. 73, 931 (2008).

    Article  CAS  Google Scholar 

  9. G. Borzsonyi, R. L. Beingessner, T. Yamazaki, J. Y. Cho, A. J. Myles, M. Malac, R. Egerton, M. Kawasaki, K. Ishizuka, A. Kovalenko and H. Fenniri, J. Am. Chem. Soc. 132, 15136(2010).

    Article  CAS  Google Scholar 

  10. G. Borzsonyi, R. S. Johnson, A. J. Myles, J.-Y. Cho, T. Yamazaki, R. L. Beingessner, A. Kovalenko and H. Fenniri, Chem. Commun. 46, 6527 (2010).

    Article  CAS  Google Scholar 

  11. G. Borzsonyi, A. Alsbaiee, R. L. Beingessner and H. Fenniri, J. Org. Chem. 75, 7233 (2010).

    Article  CAS  Google Scholar 

  12. R. Chhabra, J. G. Moralez, J. Raez, T. Yamazaki, J.-Y. Cho, A. J. Myles, A. Kovalenko and H. Fenniri, J. Am. Chem. Soc. 132, 32 (2009).

    Article  CAS  Google Scholar 

  13. G. Tikhomirov, M. Oderinde, D. Makeiff, A. Mansouri, W. Lu, F. Heirtzler, S. Kingsley, D. Y. Kwok and H. Fenniri, J. Org. Chem. 73, 4248 (2008).

    Article  CAS  Google Scholar 

  14. B.-L. Deng, R. L. Beingessner, R. S. Johnson, N. K Girdhar, C. Danumag, T. Yamazaki, and H. Fenniri, Macromolecules 45, 7157 (2012).

    Article  CAS  Google Scholar 

  15. A. Alsbaiee, M. St. Jules, R. L. Beingessner, T. Yamazaki, J. Y. Cho and H. Fenniri, Tet. Lett. 53, 1645 (2012).

    Article  CAS  Google Scholar 

  16. U. D. Hemraz, M. El-Bakkari, T. Yamazaki, J.-Y. Cho, R. L. Beingessner and H. Fenniri, Nanoscale 6, 9421 (2014).

    Article  CAS  Google Scholar 

  17. R. L. Beingessner, J. A. Diaz, U. D. Hemraz and H. Fenniri, Tet. Lett. 52, 661 (2011).

    Article  CAS  Google Scholar 

  18. J. Raez, J. G. Moralez and H. Fenniri, J. Am. Chem. Soc. 126, 16298 (2004).

    Article  CAS  Google Scholar 

  19. T. Yamazaki, H. Fenniri and A. Kovalenko, ChemPhysChem 11, 361 (2010).

    Article  CAS  Google Scholar 

  20. R. S. Johnson, T. Yamazaki, A. Kovalenko and H. Fenniri, J. Am. Chem. Soc. 129, 5735 (2007).

    Article  CAS  Google Scholar 

  21. L. Shuai, V. Parthasarathy, J.-Y. Cho, T. Yamazaki, D. A. Makeiff, R. L. Beingessner and H. Fenniri, Mater. Res. Soc. Symp. Proc. 1737, mrsf14-1737-u01-04 (2015).

    Article  CAS  Google Scholar 

  22. A. Alsbaiee, M. El-Bakkari and H. Fenniri, Mater. Res. Soc. Symp. Proc. 1316, mrsf10-1316-qq 12–18 (2011).

    Google Scholar 

  23. M. El-Bakkari, R. L. Beingessner, A. Alshamsan, J.-Y. Cho and H. Fenniri, Mater. Res. Soc. Symp. Proc. 1316, mrsf10-1316-qq 12–16 (2011).

    Article  CAS  Google Scholar 

  24. A. Alshamsan, M. El-Bakkari and H. Fenniri, Mater. Res. Soc. Symp. Proc. 1316, mrsf10-1316-qq 09–36 (2011).

    Article  CAS  Google Scholar 

  25. U. D. Hemraz and H. Fenniri, Mater. Res. Soc. Symp. Proc. 1057, 1057-1105-37 (2008).

    Google Scholar 

  26. H. Fenniri, P. J. Mathivanan, K. L. Vidal, D. M. Sherman, K J. Hallenga, K. L. Wood and J. G. Stowell, J. Am. Chem. Soc. 123, 3854 (2001).

    Article  CAS  Google Scholar 

  27. H. Fenniri, B.-L. Deng and A. E. Ribbe, J. Am. Chem. Soc. 124, 11064 (2002).

    Article  CAS  Google Scholar 

  28. H. Fenniri, B.-L. Deng, A. E. Ribbe, K Hallenga, J. Jacob and P. Thiyagarajan, Proc. Natl. Acad Sci. U.SA. 99, 6487 (2002).

    Article  CAS  Google Scholar 

  29. L. Zhang, F. Rakotondradany, A. J. Myles and H. Fenniri, Biomaterials 30, 1309 (2009).

    Article  CAS  Google Scholar 

  30. X. Meng, D. A. Stout, L. Sun, R. L. Beingessner, H. Fenniri and T. J. Webster, J. Biomed Mater Res Part A, 101A, 1095 (2012).

    Article  CAS  Google Scholar 

  31. L. Zhang, U. D. Hemraz, H. Fenniri and T. J. Webster, J. Biomed. Mater. Res. 95A, 550 (2010).

    Article  CAS  Google Scholar 

  32. A. L. Chun, J. G. Moralez, H. Fenniri and T. J. Webster, Nanotechnology 15, S234 (2004).

    Article  CAS  Google Scholar 

  33. L. Zhang, J. Rodriguez, J. Raez, A. J. Myles, H. Fenniri and T. J. Webster, Nanotechnology 20, 175101 (2009).

    Article  CAS  Google Scholar 

  34. Y. Chen, S. Song, Z. Yan, H. Fenmn and T. J. Webster, Int. J. Nanomed 6, 1035 (2011).

    CAS  Google Scholar 

  35. W. S. Journeay, S. S. Suri, J. G. Moralez, H. Fenniri and B. Singh, Small 5, 1446 (2009).

    Article  CAS  Google Scholar 

  36. L. Zhang, S. Ramsaywack, H. Fenniri and T. J. Webster, Tissue Engineering Part A 14, 1353 (2008).

    Article  CAS  Google Scholar 

  37. S. S. Singh, S. Mills, G. K. Aulakh, F. Rakotondradany, H. Fenniri and B. Singh, Int. J. Nanomed. 6, 3113 (2011).

    Article  CAS  Google Scholar 

  38. A. Childs, U. D. Hemraz, N. J. Castro, H. Fenniri and L. G. Zhang, Biomed Mater. 8, 065003 (2013).

    Article  CAS  Google Scholar 

  39. M. H. A. Le, S. S. Suri, F. Rakotondradany, H. Fenniri and B. Singh, Vet. Res. 41, 75 (2010).

    Article  CAS  Google Scholar 

  40. A. L. Chun, J. G. Moralez, T. J. Webster and H. Fenniri, Biomaterials 26, 7304 (2005).

    Article  CAS  Google Scholar 

  41. E. Fine, L. Zhang, H. Fenniri and T. J. Webster, Int. J. Nanomed. 4, 91 (2009).

    CAS  Google Scholar 

  42. W. S. Journeay, S. S. Singh, J. G. Moralez, H. Fenniri and B. Singh, Int. J. Nanomed 3, 373 (2008).

    CAS  Google Scholar 

  43. A. Durmus, G. Gunbas, S. Farmer, M. Olmstead, M. Mascai, B. Legesse, J.-Y. Cho, R. L. Beingessner, T. Yamazaki and H. Fenniri, J. Org. Chem. 78, 11421 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hicham Fenniri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Legesse, B., Cho, JY., Beingessner, R.L. et al. Fluorescent Rosette Nanotubes from the C-analogue of the Guanine–Cytosine (G∧C) Motif. MRS Online Proceedings Library 1796, 1–6 (2015). https://doi.org/10.1557/opl.2015.523

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2015.523

Navigation