Skip to main content
Log in

PbS/CdS Core/Shell Nanocrystals For Solution-Processed Colloidal Quantum Dot Solar Cells

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

An epitaxial shell of cadmium sulphide is grown on lead sulphide quantum dots in order to reduce the concentration of surface defects. Thin solid films of these core/shell materials are found to have low carrier concentrations due to effective surface passivation which reduces the number of dangling bonds. In this paper PbS/CdS is used as a quasi-intrinsic layer in p-i-n photovoltaic devices where PbS acts as the p-layer and ZnO the n-layer. By studying different permutations of these layers and the degree of PbS p-type doping by annealing we optimise fill factor and open-circuit voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kramer I. J.; Sargent E. H. Colloidal Quantum Dot Photovoltaics: A Path Forward. ACS Nano 2011, 5, 8506–8514.

    Article  CAS  Google Scholar 

  2. Tang J.; Sargent E. H. Infrared Colloidal Quantum Dots for Photovoltaics: Fundamentals and Recent Progress. Adv. Mater. 2011, 23, 12–29.

    Article  CAS  Google Scholar 

  3. Kramer I. J.; Sargent E. H. The Architecture of Colloidal Quantum Dot Solar Cells: Materials to Devices. Chem. Rev. 2014, 114, 863–882.

    Article  CAS  Google Scholar 

  4. Ip A. H.; Thon S. M.; Hoogland S.; Voznyy O.; Zhitomirsky D.; Debnath R.; Levina L.; Rollny L. R.; Carey G. H.; Fischer A.; {etet al.} Hybrid Passivated Colloidal Quantum Dot Solids. Nat. Nanotechnol. 2012, 7, 577–582.

    Article  CAS  Google Scholar 

  5. Lan X.; Masala S.; Sargent E. H. Charge-Extraction Strategies for Colloidal Quantum Dot Photovoltaics. Nat. Mater. 2014, 13, 233–240.

    Article  CAS  Google Scholar 

  6. Chuang C.-H. M.; Brown P. R.; Bulović V.; Bawendi M. G. Improved Performance and Stability in Quantum Dot Solar Cells through Band Alignment Engineering. Nat. Mater. 2014.

    Google Scholar 

  7. Guyot-Sionnest P. Electrical Transport in Colloidal Quantum Dot Films. J. Phys. Chem. Lett. 2012, 3, 1169–1175.

    Article  CAS  Google Scholar 

  8. Moreels I.; Fritzinger B.; Martins J. C.; Hens Z. Surface Chemistry of Colloidal PbSe Nanocrystals. J. Am. Chem. Soc. 2008, 130, 15081–15086.

    Article  CAS  Google Scholar 

  9. Turyanska L.; Elfurawi U.; Li M.; Fay M. W.; Thomas N. R.; Mann S.; Blokland J. H.; Christianen P. C. M.; Patanè A. Tailoring the Physical Properties of Thiol-Capped PbS Quantum Dots by Thermal Annealing. Nanotechnology 2009, 20, 315604.

    Article  CAS  Google Scholar 

  10. Neo D. C. J.; Cheng C.; Stranks S. D.; Fairclough S. M.; Kim J. S.; Kirkland A. I.; Smith J. M.; Snaith H. J.; Assender H. E.; Watt A. A. R. Influence of Shell Thickness and Surface Passivation on PbS/CdS Core/Shell Colloidal Quantum Dot Solar Cells. Chem. Mater. 2014, 140606160802003.

    Google Scholar 

  11. Hines M. A.; Scholes G. D. Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution. Adv. Mater. 2003, 15, 1844–1849.

    Article  CAS  Google Scholar 

  12. Neo M. S.; Venkatram N.; Li G. S.; Chin W. S.; Ji W. Synthesis of PbS/CdS Core−Shell QDs and Their Nonlinear Optical Properties. J. Phys. Chem. C 2010, 114, 18037–18044.

    Article  CAS  Google Scholar 

  13. Pacholski C.; Kornowski A.; Weller H. Self-Assembly of ZnO: From Nanodots to Nanorods. Angew. Chem. Int. Ed Engl. 2002, 41, 1188–1191.

    Article  CAS  Google Scholar 

  14. Zhao H.; Chaker M.; Wu N.; Ma D. Towards Controlled Synthesis and Better Understanding of Highly Luminescent PbS/CdS Core/shell Quantum Dots. J. Mater. Chem. 2011, 21, 8898.

    Article  CAS  Google Scholar 

  15. Choi M.-J.; Oh J.; Yoo J.-K.; Choi J.; Sim D. M.; Jung Y. S. Tailoring of the PbS/metal Interface in Colloidal Quantum Dot Solar Cells for Improvements of Performance and Air Stability. Energy Environ. Sci. 2014, 7, 3052.

    Article  CAS  Google Scholar 

  16. Cheng C.; Lee M. M.; Noel N. K.; Hughes G. M.; Ball J. M.; Assender H. E.; Snaith H. J.; Watt A. A. R. Polystyrene Templated Porous Titania Wells for Quantum Dot Heterojunction Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 14247–14252.

    Article  CAS  Google Scholar 

  17. Kim G.-H.; Walker B.; Kim H.-B.; Kim J. Y.; Sargent E. H.; Park J.; Kim J. Y. Inverted Colloidal Quantum Dot Solar Cells. Adv. Mater. 2014, 26, 3321–3327.

    Article  CAS  Google Scholar 

  18. Gao J.; Jeong S.; Lin F.; Erslev P. T.; Semonin O. E.; Luther J. M.; Beard M. C. Improvement in Carrier Transport Properties by Mild Thermal Annealing of PbS Quantum Dot Solar Cells. Appl. Phys. Lett. 2013, 102, 043506.

    Article  Google Scholar 

  19. Ko D.-K.; Brown P. R.; Bawendi M. G.; Bulović V. P-I-N Heterojunction Solar Cells with a Colloidal Quantum-Dot Absorber Layer. Adv. Mater. 2014, 26, 4845–4850.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from EPSRC (Platform Grant EP/F048009/1). D.C.J.N would like to thank A*STAR for PhD overseas research scholarship.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neo, D.C.J., Cheng, C., Assender, H.E. et al. PbS/CdS Core/Shell Nanocrystals For Solution-Processed Colloidal Quantum Dot Solar Cells. MRS Online Proceedings Library 1748, 7–13 (2014). https://doi.org/10.1557/opl.2014.959

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2014.959

Navigation