Skip to main content
Log in

Three-dimensional tomography of single charge inside dielectric materials using electrostatic force microscopy

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

In this contribution, we report on a numerical study demonstrating how to realize Electrostatic Force Microscopy (EFM) tomography. Based on the Equivalent Charge Method, both force and force gradient between a buried object (or trapped charges) and the Atomic Force Microscope tip are calculated. The main idea is to scan the sample at different tip sample distances and obtain the position and charge value of the object using reconstruction algorithms. The quantitative analysis here presented is a first step toward tomography for samples presenting “dilute” point charges creating non correlated signals by the interpretation of EFM signals. Lateral resolution, sensitivity (i.e. ability to detect an object), performance and limitations of EFM are also discussed in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Schonenberger and S. F. Alvarado, Physical Review Letters 65, 3162 (1990)

    Article  CAS  Google Scholar 

  2. C. Riedel, R. Arinero, T. Ph, M. Ramonda, G. Leveque, G. A. Schwartz, D. G. d. Oteyza, A. Alegria, and J. Colmenero, Journal of Applied Physics 106, 024315 (2009)

    Article  Google Scholar 

  3. C. Riedel, R. Sweeney, N. E. Israeloff, R. Arinero, G. A. Schwartz, A. Alegria, P. Tordjeman and J. Colmenero, Applied Physics Letters, 96, 213110 (2010)

    Article  Google Scholar 

  4. C. Riedel, A. Alegría, G. A. Schwartz, R. Arinero, J. Colmenero, J. J. Sáenz, Applied Physics Letters, 99, 023101 (2011)

    Article  Google Scholar 

  5. L. Portes, P. Girard, R. Arinero, M. Ramonda, Review of Scientific Instruments, 77, 096101 (2006)

    Article  Google Scholar 

  6. S. Belaïdi, F. Lebon, P. Girard, G. Leveque and S. Pagano, Applied Physics A: Materials Science and Processing 66(0) p. S239–S243 (1998)

    Article  Google Scholar 

  7. S. Belaïdi, P. Girard, G. Leveque, J. Appl. Phys., 81(3), 1023–1030 (1997)

    Article  Google Scholar 

  8. G. M. Sacha, E. Sahagun, and J.J. Saenz, Journal of Applied Physics, 101(2), p. 024310 (2007).

    Article  Google Scholar 

  9. E. Durand, Electrostatique, tome III, Masson, Paris, p.233 (1966).

    Google Scholar 

  10. J. Sun, J. C. Schotland, R. Hillenbrand, and P. S. Carney, Applied Physics Letters 95, 121108 (2009).

    Article  Google Scholar 

  11. G. Gramse, J. Casuso, J. Toset, L. Fumagalli, and G. Gomila, Nanotechnology 20, 395702 (2009)

    Article  CAS  Google Scholar 

  12. C. Riedel, R. Arinero, P. Tordjeman, G. Lévêque, G. A. Schwartz, A. Alegria and J. Colmenero, Phys. Rev. E, 81 010801(2010)

    Article  CAS  Google Scholar 

  13. M. Zhao, X. Gu, S. E. Lowther, C. Park C, Y. C. Jean and T. Nguyen, Nanotechnology, 21 225702 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riedel, C., Arinero, R., Alegria, A. et al. Three-dimensional tomography of single charge inside dielectric materials using electrostatic force microscopy. MRS Online Proceedings Library 1421, 1–6 (2012). https://doi.org/10.1557/opl.2012.53

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2012.53

Navigation