Skip to main content
Log in

Relaxation Processes at High Temperature in TiAl-Nb-Mo Intermetallics

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

In the last decades there was a growing interest in developing new light-weight intermetallic alloys, which are able to substitute the heavy superalloys at a certain temperature range. At present a new Ti-Al-Nb-Mo family, called TNM™ alloys, is being optimized to fulfill the challenging requirements. The aim of the present work was to study the microscopic mechanisms of defect mobility at high temperature in TNM alloys in order to contribute to the understanding of their influence on the mechanical properties and hence to promote the further optimization of these alloys. Mechanical spectroscopy has been used to study the internal friction and the dynamic modulus up to 1460 K of a TNM alloy under different thermal treatments. These measurements allow to follow the microstructural evolution during in-situ thermal treatments. A relaxation process has been observed at about 1050 K and was characterized as a function of temperature and frequency in order to obtain the activation parameters of the responsible mechanism. In particular, the activation enthalpy has been determined to be H= 3 eV. The results are discussed and an atomic mechanism is proposed to explain the observed relaxation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gamma Titanium Alumindes 1999, edited by Y.W. Kim, D.M. Dimiduk, and M.H. Loretto (TMS, Warrendale, PA, 1999).

    Google Scholar 

  2. Titanium and Titanium alloys, edited by C. Leyens, M. Peters (Wiley-VCH, Weinheim, Germany, 2003).

    Google Scholar 

  3. Gamma Titanium Alumindes 2003, edited by Y.W. Kim, H. Clemens and A.H. Rosemberg (TMS, Warrendale, PA, 2003).

    Google Scholar 

  4. F. Appel and R. Wagner, Mater. Sci. Eng. R 22, 187 (1998).

    Article  Google Scholar 

  5. H. Kestler and H. Clemens, in Ref. (2), (2003), p 351–392.

  6. H. Clemens, W. Wallgram, S. Kremmer, V. Güther, A. Otto and A. Bartels, Adv. Eng. Mater. 10, 707 (2008).

    Article  CAS  Google Scholar 

  7. F. Appel and M. Oehring, in Ref. (2), (2003) p 89–152.

  8. C. Herzig, T. Przeorski, M. Friesel, F. Hisker and S. Divinski, Intermetallics 9, 461 (2001).

    Article  CAS  Google Scholar 

  9. M. Takeyama and S. Kobayashi, Intermetallics 13, 989 (2005).

    Article  Google Scholar 

  10. R.M. Imayev, V.M. Imayev, M. Oehring and F. Appel, Intermetallics 15, 451 (2007).

    Article  CAS  Google Scholar 

  11. Z. Zhang, K.J. Leonard, D.M. Dimiduk and V.K. Vasudevan, Structural Intermetallics 2001. (TMS, Warrendale, PA, 2001) p. 515.

    Google Scholar 

  12. Y.W. Kim and D.M. Dimiduk, Structural Intermetallics 2001. (TMS, Warrendale, PA, 2001) p. 625.

    Google Scholar 

  13. H. Clemens, B. Boeck, W. Wallgram, T. Schmoelzer, L.M. Droessler, G.A. Zickler, H. Leitner and A. Otto, (Mater. Res. Soc. Symp. Proc. Volume 1128, Warrendale, PA, 2009) p.115.

    Google Scholar 

  14. I.J. Watson, K.D. Liss, H. Clemens, W. Wallgram, T. Schmoelzer, T.C. Hansen and M. Reid, Adv. Eng. Mater. 11, 932 (2009).

    Article  CAS  Google Scholar 

  15. H. Clemens, H.F. Chladil, W. Wallgram, G.A. Zickler, R. Gerlig, K.D. Liss, S. Kemmer, V. Güther and W. Smarsly, Intermetallics 16, 827 (2008).

    Article  CAS  Google Scholar 

  16. L.M. Droessler, T. Schmoelzer, W. Wallgram, L. Cha, G. Das and H. Clemens, (Mater. Res. Soc. Symp. Proc. Volume 1128, Warrendale, PA, 2009) p. U03–08.

    Google Scholar 

  17. T. Schmoelzer, K.D. Liss, G.A. Zickler, I.J. Watson, L.M. Droessler, W. Wallgram, T. Buslaps, A. Studer and H. Clemens, Intermetallics 18, 1544 (2010).

    Article  CAS  Google Scholar 

  18. A.S. Nowick and B.S. Berry, Anelastic Relaxation in Crystalline Solids. (Academic Press, New York, 1972).

    Google Scholar 

  19. Mechanical Spectroscopy Q -1 2001, edited by R. Schaller, G. Fantozzi and G. Gremaud G. (Trans Tech Publications, Uetikon-Zuerich (SW), 2001).

    Google Scholar 

  20. J. San Juan, Mater. Sci. Forum 366-368, 32 (2001).

    Article  CAS  Google Scholar 

  21. V. Güther, J. Otto, J. Klose, C. Rothe, H. Clemens, W. Kachler, S. Winter and S. Kremmer, Structural Intermetallics for Elevated Temperature Applications, edited by Y.W. Kim, D. Morris, R. Yang and C. Leyens. (TMS, Warrendale, PA, 2008), p. 249.

    Google Scholar 

  22. V. Güther, C. Rothe, S. Vinter and H. Clemens, BHM 155, 325 (2010).

    Google Scholar 

  23. P. Simas, J. San Juan, R. Schaller and M. L. Nó, Key. Eng. Mat. 423, 89 (2009).

    Article  Google Scholar 

  24. P. Simas, PhD Thesis, University of the Basque Country, (2012).

  25. L. Cha, T. Schmoelzer, Z. Zhang, S. Mayer, H. Clemens, P. Staron and G. Dehm, Adv. Eng. Mater. 14, 299 (2012).

    Article  CAS  Google Scholar 

  26. J. San Juan, P. Simas, T. Schmoelzer, S. Mayer, H. Clemens and M.L. Nó, to be published.

  27. P. Simas, T. Schmoelzer, M.L. Nó, H. Clemens and J. San Juan, (Mater. Res. Soc. Symp. Proc. Volume 1295, Warrendale, PA, 2011), p. 139.

  28. M. Weller, G. Haneczok, H. Kestler and H. Clemens , Mater. Sci. Eng. A 370, 234 (2004).

    Article  Google Scholar 

  29. M. Perez-Bravo, M.L. Nó, I. Madariaga, K. Ostolaza and J. San Juan, in Gamma Titanium Aluminides 2003, edited by Y.W. Kim, H. Clemens and A.H. Rosemberg. (TMS, Warrendale, PA, USA, 2003) p 451.

    Google Scholar 

  30. M. Perez-Bravo, M.L. Nó, I. Madariaga, K. Ostolaza and J. San Juan, Mater. Sci. Eng. A 370, 240 (2004).

    Article  Google Scholar 

  31. M. Weller, H. Clemens, G. Haneczok, G. Dehm, A. Bartels, S. Bystrzanowski, R. Gerling and E. Arzt, Phil. Mag. Letters 84, 383 (2004).

    Article  CAS  Google Scholar 

  32. M. Weller, H. Clemens and G. Haneczok, Mater. Sci. Eng. A 442, 138 (2006).

    Article  Google Scholar 

  33. W. Wallgram, T. Schmoelzer, L. Cha, G. Das, V. Güther, and H. Clemens, Int. J. Mat. Res. 100, 1021 (2009).

    Article  CAS  Google Scholar 

  34. J. Rusing and C. Herzig, Intermetallics 4, 647 (1996).

    Article  Google Scholar 

  35. Y. Mishin and C. Herzig, Acta Mater. 48, 589 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simas, P., Schmoelzer, T., Mayer, S. et al. Relaxation Processes at High Temperature in TiAl-Nb-Mo Intermetallics. MRS Online Proceedings Library 1516, 41–46 (2013). https://doi.org/10.1557/opl.2012.1576

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2012.1576

Navigation