Skip to main content
Log in

Dicyanamide Ionic Liquids: A Versatile Precursor System for Advanced Mesoporous Materials and Functional Composites

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Ionic liquids (ILs) are highly suitable to act as precursors for nitrogen-doped carbon materials. Therefore two structural requirements must be fulfilled: On the one hand, the cation should carry nitrogen in a preferably aromatic environment, on the other hand nitrile groups are essential that can be e.g. incorporated by dicyanamide anions. Thermolysis of such ILs yields highly conductive nitrogen doped carbon exhibiting a graphitic microstructure. Furthermore, various nanomorphologies can be induced via hard-templating. The material has been shown to sufficiently suppress growth and agglomeration of Pt nanoparticles upon their electrocatalytic performance, when applied as a thin coating on the Pt host material. This novel concept of reactivity could further be applied in other fields of materials synthesis, paving the way for the one-pot synthesis of mesoporous carbon/silica composites and in-situ metal doping thereof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Kuhn, M. Antonietti and A. Thomas, Angewandte Chemie International Edition 47, 3450–3453 (2008).

    Article  CAS  Google Scholar 

  2. P. Kuhn, A. Forget, D.S. Su, A. Thomas and M. Antonietti, Journal of the American Chemical Society 130(40), 13333–13337 (2008).

    Article  CAS  Google Scholar 

  3. E. Irran, B. Jurgens and W. Schnick, Chemistry-a European Journal 7(24), 5372–5381 (2001).

    Article  CAS  Google Scholar 

  4. B. Jurgens, E. Irran, J. Schneider and W. Schnick, Inorganic Chemistry 39(4), 665–670 (2000).

    Article  CAS  Google Scholar 

  5. B. Jurgens, W. Milius, P. Morys and W. Schnick, Zeitschrift Fur Anorganische Und Allgemeine Chemie 624(1), 91–97 (1998).

    Article  Google Scholar 

  6. J.P. Paraknowitsch, A. Thomas and M. Antonietti, Journal of Materials Chemistry 20(32), 6746–6758 (2010).

    Article  CAS  Google Scholar 

  7. J.P. Paraknowitsch, J. Zhang, D.S. Su, A. Thomas and M. Antonietti, Advanced Materials 22(1), 87–92 (2010).

    Article  CAS  Google Scholar 

  8. J.S. Lee, X.Q. Wang, H.M. Luo and S. Dai, Advanced Materials 22(9), 1004–1007 (2010).

    Article  CAS  Google Scholar 

  9. X.Q. Wang and S. Dai, Angewandte Chemie-International Edition 49(37), 6664–6668 (2010).

    Article  CAS  Google Scholar 

  10. J.S. Lee, X.Q. Wang, H.M. Luo, G.A. Baker and S. Dai, Journal of the American Chemical Society 131(13), 4596–4597 (2009).

    Article  CAS  Google Scholar 

  11. W. Yang, T.P. Fellinger and M. Antonietti, Journal of the American Chemical Society 133(2), 206–209 (2011).

    Article  CAS  Google Scholar 

  12. L. Zhao, Y.S. Hu, H. Li, Z.X. Wang and L.Q. Chen, Advanced Materials 23(11), 1385–1388 (2011).

    Article  CAS  Google Scholar 

  13. X. Tuaev, J.P. Paraknowitsch, R. Illgen, A. Thomas and P. Strasser, Physical Chemistry Chemical Physics 14, 6444–6447 (2012).

    Article  CAS  Google Scholar 

  14. F. Hasché, T.-P. Fellinger, M. Oezaslan, J.P. Paraknowitsch, M. Antonietti and P. Strasser, ChemCatChem 4, 479–483 (2012).

    Article  CAS  Google Scholar 

  15. J.P. Paraknowitsch, Y.J. Zhang and A. Thomas, Journal of Materials Chemistry 21, 15537–15543 (2011).

    Article  CAS  Google Scholar 

  16. J.P. Paraknowitsch, O. Sukhbat, Y.J. Zhang and A. Thomas, European Journal of Inorganic Chemistry, DOI: 10.1002/ejic.201200680 (2012).

    Google Scholar 

  17. T. Fukushima and T. Aida, Chemistry–A European Journal 13(18), 5048–5058 (2007).

    Article  CAS  Google Scholar 

  18. C.K. Acharya, D.I. Sullivan and C.H. Turner, The Journal of Physical Chemistry C 112(35), 13607–13622 (2008).

    Article  CAS  Google Scholar 

  19. Y. Zhou, K. Neyerlin, T.S. Olson, S. Pylypenko, J. Bult, H.N. Dinh, T. Gennett, Z. Shao and R. O’Hayre, Energy & Environmental Science 3(10), 1437–1446 (2010).

    Article  CAS  Google Scholar 

  20. Q. Cai, Z.S. Luo, W.Q. Pang, Y.W. Fan, X.H. Chen and F.Z. Cui, Chemistry of Materials 13(2), 258–263 (2001).

    Article  CAS  Google Scholar 

  21. M. Grun, I. Lauer and K.K. Unger, Advanced Materials 9(3), 254–257 (1997).

    Article  Google Scholar 

  22. H.P. Lin, Y.R. Cheng and C.Y. Mou, Chemistry of Materials 10(12), 3772–3776 (1998).

    Article  CAS  Google Scholar 

  23. H.P. Lin and C.Y. Mou, Accounts Chem. Res. 35(11), 927–935 (2002).

    Article  CAS  Google Scholar 

  24. S.R. Batten and K.S. Murray, Coordination Chemistry Reviews 246(1-2), 103–130 (2003).

    Article  CAS  Google Scholar 

  25. S.R. Batten, P. Jensen, B. Moubaraki, K.S. Murray and R. Robson, Chemical Communications, 439–440 (1998).

    Google Scholar 

  26. P. Jensen, S.R. Batten, G.D. Fallon, D.C.R. Hockless, B. Moubaraki, K.S. Murray and R. Robson, J. Solid State Chem. 145(2), 387–393 (1999).

    Article  CAS  Google Scholar 

  27. P. Jensen, S.R. Batten, B. Moubaraki and K.S. Murray, J. Solid State Chem. 159(2), 352–361 (2001).

    Article  CAS  Google Scholar 

  28. S.R. Marshall, C.D. Incarvito, J.L. Manson, A.L. Rheingold and J.S. Miller, Inorganic Chemistry 39(9), 1969–1973 (2000).

    Article  CAS  Google Scholar 

  29. S.R. Batten, P. Jensen, B. Moubaraki and K.S. Murray, Chemical Communications (23) 2331–2332 (2000).

    Google Scholar 

  30. J.W. Raebiger, J.L. Manson, R.D. Sommer, U. Geiser, A.L. Rheingold and J.S. Miller, Inorganic Chemistry 40(11), 2578–2581 (2001).

    Article  CAS  Google Scholar 

  31. M.L. Tong, J. Ru, Y.M. Wu, X.M. Chen, H.C. Chang, K. Mochizuki and S. Kitagawa, New J. Chem. 27(5), 779–792 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

DFG is kindly acknowledged for funding of this work within the framework of UNICAT cluster of excellence. Dr Caren Göbel and Sören Selve are gratefully acknowledged for obtaining TEM micrographs at ZELMI. Dr Yuanjian Zhang is kindly thanked for his outstanding contribution of XPS measurements. Special thanks go to Maria Unterweger, Christina Eichenauer and Anne Sobotta for their support of our work.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paraknowitsch, J.P., Tuaev, X., Strasser, P. et al. Dicyanamide Ionic Liquids: A Versatile Precursor System for Advanced Mesoporous Materials and Functional Composites. MRS Online Proceedings Library 1473, 13–19 (2012). https://doi.org/10.1557/opl.2012.1516

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2012.1516

Navigation