Skip to main content
Log in

Characterization of the Stainless Steel Corrosion Kinetic By EIS

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

An electrochemical study was carried out in order to obtain the effects of the turbulent flow condition on the stainless steel corrosion immersed in natural seawater using an electrochemical corrosion technique like electrochemical impedance spectroscopy (EIS). A three-electrode electrochemical glass cell was used to obtain the electrochemical measures, where a cylinder of the AISI 410 stainless steel was used as working electrode, a saturated calomel electrode as reference electrode and a synthesised graphite rod as auxiliary electrode. 24 hours was the total exposure time. In order to control the hydrodynamic conditions a rotating cylinder electrode (RCE) was used and, a scanning electron microscope (SEM) was used in order to obtain the superficial analyses of the metallic surface after tests. The results of the electrochemical techniques shown that at 1000 rpm of the rotation speed, the corrosion rate (CR) increased as the exposure time also increased. In additions, in the other rotations speed (2000, 3000 and 5000 rpm), the CR was affected by the corrosion products formed on metallic surface. t is important to point out that the corrosion morphology found in the steel sample was localized corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.C. Silverman, Corrosion, 44, 42 (1988).

    Article  CAS  Google Scholar 

  2. S.W. Dean, Materials Performance, 28, 61 (1990).

    Google Scholar 

  3. S. Papavinasam, R.W. Revie, M. Attard, A. Demoz, K. Michaelian, Corrosion, 59, 897 (2003).

    Article  CAS  Google Scholar 

  4. B. Poulson, Corrosion Science, 23, 391 (1983).

    Article  CAS  Google Scholar 

  5. B. Poulson, Corrosion Science, 35, 655 (1993).

    Article  CAS  Google Scholar 

  6. B. Poulson, J. Appl. Electrochemistry, 24, 1 (1994).

    Article  CAS  Google Scholar 

  7. G. Liu, D. A. Tree, M. S. High, Corrosion, 50, 584 (1994).

    Article  CAS  Google Scholar 

  8. U. Lotz, CORROSION/90, Paper no. 27, Houston, TX, NACE, (1990).

    Google Scholar 

  9. G. Schmitt, W. Bruckhoff, K. Faessler, G. Blummel, Materials Performance, 29, 85 (1991).

    Google Scholar 

  10. D. C. Silverman, Corrosion, 40, 220 (1984).

    Article  CAS  Google Scholar 

  11. R. Galvan-Martinez, J. Mendoza-Flores, R. Duran-Romero, J. Genesca, Materials and Corrosion, 58, 514 (2007).

    Article  CAS  Google Scholar 

  12. R. Galván-Martínez, R. Orozco-Cruz, R. Torres- Sanchez, E. A. Martinez, Materials and Corrosion, 61, 872 (2010).

    Article  Google Scholar 

  13. S. Nesic, G. T. Solvi, J. Enerhaug, Corrosion, 51, 773 (1995).

    Article  CAS  Google Scholar 

  14. D. R. Gabe, J. Applied Electrochemistry, 4, 91 (1974).

    Article  CAS  Google Scholar 

  15. D. R. Gabe, F. C. Walsh, J. Appl. Electrochem. 13, 3 (1983).

    Article  CAS  Google Scholar 

  16. R. Galvan-Martinez, J. Mendoza-Flores, R. Duran-Romero, and J. Genesca, Materials and Corrosion, 7, 514 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galvan-Martinez, R., Flores-Cocuyo, M., Orozco-Cruz, R. et al. Characterization of the Stainless Steel Corrosion Kinetic By EIS. MRS Online Proceedings Library 1372, 47–53 (2011). https://doi.org/10.1557/opl.2012.135

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2012.135

Keywords

Navigation