Skip to main content
Log in

Molecular Recognition Mechanisms of Calmodulin Examined by Perturbation-Response Scanning

  • Multiscale Mechanics of Hierarchical Biological, Bioinspired, and Biomedical Materials
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We analyze the apo and holo calmodulin (CaM) structures by sequentially inserting a perturbation on every residue of the protein, and monitoring the linear response. Residue crosscorrelation matrices obtained from 20 ns long molecular dynamics simulation of the apo-form are used as the kernel in the linear response. We determine two residues whose perturbation equivalently yields the experimentally determined displacement profiles of CaM, relevant to the binding of the trifluoperazine (TFP) ligand. They reside on structurally equivalent positions on the N- and C-terminus lobes of CaM, and are not in direct contact with the binding region. The direction of the perturbation that must be inserted on these residues is an important factor in recovering the conformational change, implying that highly selective binding must occur near these sites to invoke the necessary conformational change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ikura, J.B. Ames, Proc. Natl. Acad. Sci. 103,1159–1164 (2006).

    Article  CAS  Google Scholar 

  2. J.L. Fallon, F.A. Quicho, Structure 11, 1303–1307 (2003).

    Article  CAS  Google Scholar 

  3. M. Vandonselaar, R.A. Hickie, W.J. Quail and T.J. Delbaere, Struct. Biol. 1, 795–801 (1994).

    Article  CAS  Google Scholar 

  4. CM. Shepherd and H.J. Vogel, Blophys. J. 87, 780–791 (2004).

    Article  CAS  Google Scholar 

  5. C. Atilgan, A.R. Atilgan, PLoS Comput. Biol. 5, el000544 (2009).

    Article  Google Scholar 

  6. M. Ikeguchi, J. Ueno, M. Sato, and A. Kidera, Phys. Rev. Lett. 94, 078102 (2005).

    Article  Google Scholar 

  7. L.S. Yilmaz, A.R. Atilgan, J. Chem. Phys. 113, 4454–4464 (2000).

    CAS  Google Scholar 

  8. C. Atilgan, Z.N. Gerek, S.B. Ozkan, A.R. Atilgan, Blophys. J. 99, 933–943 (2010).

    Article  CAS  Google Scholar 

  9. A.R. Atilgan, S.R. Durell, R.L. Jernigan, M.C. Demirei, O. Keskin, et al, Blophys. J. 80, 505–515(2001).

    Article  CAS  Google Scholar 

  10. C. Baysal, A.R. Atilgan, Proteins. 45, 62–70 (2001).

    Article  CAS  Google Scholar 

  11. CBaysal, A.R. Atilgan, Proteins. 43, 150–160 (2001).

    Article  CAS  Google Scholar 

  12. Y.S. Babu, C.E. Bugg , W.J. Cook, J. Mol. Biol. 204, 191–204 (1988).

    Article  CAS  Google Scholar 

  13. W. Humphrey, A. Dalke, K. Schuiten, J. Mol. Graph 14, 33–38(1996).

    Article  CAS  Google Scholar 

  14. J.C Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, et al., J. Comput. Chem. 26, 1781–1802(2005).

    Article  CAS  Google Scholar 

  15. B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, et al., J. Comput. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  16. T. Darden, L. Perera, L.P. Li, L. Pedersen, Struc. Fold.Des. 7, R55–R60 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aykut, A.O., Atilgan, A.R. & Atilgan, C. Molecular Recognition Mechanisms of Calmodulin Examined by Perturbation-Response Scanning. MRS Online Proceedings Library 1301, 137–142 (2011). https://doi.org/10.1557/opl.2011.568

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2011.568

Navigation