50nm Gate-Length Hydrogen Terminated Diamond Field Effect Transistors – Characterization and Inspection of Operation.


Hydrogen terminated diamond field effect transistors (FET) of 50nm gate length have been fabricated, their DC operation characterised and their physical and chemical structure inspected by Transmission Electron Microscopy (TEM) and Electron Energy Loss Spectroscopy (EELS). DC characterisation of devices demonstrated pinch-off of the source-drain current can be maintained by the 50nm gate under low bias conditions. At larger bias, off-state output conductance increases, demonstrating most likely the onset of short-channel effects at this reduced gate length.

This is a preview of subscription content, access via your institution.


  1. [1]

    K. Ueda, M. Kasu, Y. Yamauchi, T. Makimoto, M. Schwitters, D. J. Twitchen, G. A. Scarsbrook, and S. E. Coe, Electron Device Letters, IEEE, 27, 7 (2006).

    Article  Google Scholar 

  2. [2]

    K. Hirama, H. Takayanagi, S. Yamauchi, Y. Jingu, H. Umezawa, H. Kawarada, Electron Devices Meeting (IEEE Washington DC 2007), pp 873 – 876

    Google Scholar 

  3. [3]

    A. Aleksov, A. Denisenko, U. Spitzberg, T. Jenkins, W. Ebert, E. Kohn, Diamond and Related Materials 11, 382 (2002).

    CAS  Article  Google Scholar 

  4. [4]

    J. Foord, C. Laua, M. Hiramatsub, R. Jackman, C. Nebeld, P.Bergonzoe, Diamond and Related Materials 11, 856 (2002).

    CAS  Article  Google Scholar 

  5. [5]

    H. J. Looi, L. Y. S. Pang, A. B. Molloy, F. Jones, J. S. Foord, R. B. Jackman, Diamond and Related Materials 7, 550 (1998).

    CAS  Article  Google Scholar 

  6. [6]

    Makoto Kasu, Kenji Ueda, Hiroyuki Kageshima, Yoshiharu Yamauchi, Diamond and Related Materials 17, 741 (2008).

    CAS  Article  Google Scholar 

  7. [7]

    P. Dollfus, P. Hesto, Solod-State Electronics 36, 5, 711 (1993).

    Article  Google Scholar 

  8. [8]

    F. Maier, M. Riedel, B. Mantel, J. Ristein, and L. Ley, Phys. Rev. Lett. 85, 3472 (2000).

    CAS  Article  Google Scholar 

  9. [9]

    V. Chakrapani, J. C. Angus, A. B. Anderson, S. D. Wolter, B. R. Stoner, and G. U. Sumanasekera, Science 318, 1424 (2007)

    CAS  Article  Google Scholar 

  10. [10]

    Wei Chen,, Dongchen Qi, Xingyu Gao, and Andrew Thye Shen Wee, Prog. Surf. Sci. 84, 279 (2009)

    CAS  Article  Google Scholar 

  11. [11]

    Electron energy loss spectroscopy in the electron microscope (2nd Ed.), R.F. Edgerton, Plenum Press, New York, 1996.

  12. [12]

    Digital Micrograph software, http://www.gatan.com

  13. [13]

    M. Avalos-Borja, G.A. Hirata, O. Contreras, X.G. Ning, A. Duarte-Moller, A. Barna, Diamond and Related Materials 5, 1249 (1996)

    CAS  Article  Google Scholar 

  14. [14]

    M. I. De Barros, V. Serin, L. Vandenbulcke, G. Botton, P. Andreazza, M. W. Phaneuf, Diamond and Related Materials 11, 1544 (2002)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to David A. J. Moran.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moran, D.A., MacLaren, D.A., Porro, S. et al. 50nm Gate-Length Hydrogen Terminated Diamond Field Effect Transistors – Characterization and Inspection of Operation.. MRS Online Proceedings Library 1282, 1601 (2010). https://doi.org/10.1557/opl.2011.455

Download citation