Skip to main content

Advertisement

Log in

Energy landscape models for conduction and drift in phase change memory

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The physical modeling of carrier conduction and material-related effects such as crystallization, structural relaxation (SR), electromigration and ion migration in chalcogenide materials is a key challenge toward the development and scaling of phase change memory (PCM) devices. In particular, future scaling to 10 nm and below may require addressing variability effects in the programming, switching and retention properties of the cell. Variability is deeply linked with the nanometer-scale fluctuations of potential, atomic structure and material composition that affect conduction, structure relaxation and crystallization. Therefore, the physical modeling of conduction and reliability in PCM devices requires energy landscape models, describing the random fluctuations of e.g. the potential energy dictating the carrier transport and the free energy controlling the atomic rearrangement of the amorphous chalcogenide structure. This work discusses energy landscape models for a physical description of (i) electrical conduction in the amorphous phase and (ii) SR responsible for resistance drift in the amorphous chalcogenide phase. The link between the effective energy barrier in conduction and relaxation will be clarified, and analytical models for the prediction of drift depending on time and temperature will be introduced. These models provide the first comprehensive approach for a physics-based prediction of resistance window, resistance drift and their corresponding statistical variability within large PCM arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Chung, B. Jeong, B. Min, Y. Choi, B-H. Cho, J. Shin, J. Kim, J. Sunwoo, J-M. Park, Q. Wang, Y-J. Lee, S. Cha, D. Kwon, S. Kim, S. Kim, Y. Rho, M-H. Park, J. Kim, I. Song, S. Jun, J. Lee, K. Kim, K-W. Lim, W-R. Chung, C. Choi, H. Cho, I. Shin, W. Jun, S. Hwang, K-W. Song, K. Lee, S-W. Chang, W-Y. Cho, J-H. Yoo, and Y-H. Jun, Proc. ISSCC 500 (2011).

  2. C. Villa, D. Mills, G. Barkley, H. Giduturi, S. Schippers, and D. Vimercati, Proc. ISSCC, 270 (2010).

  3. Y. Sasago, M. Kinoshita, T. Morikawa, K. Kurotsuchi, S. Hanzawa, T. Mine, A. Shima, Y. Fujisaki, H. Kume, H. Moriya, N. Takaura and K. Torii, Symp. VLSI Tech. Dig. 24 (2009).

  4. D. Kau, S. Tang, I. V. Karpov, R. Dodge, B. Klehn, J. A. Kalb, J. Strand, A. Diaz, N. Leung, J. Wu, S. Lee, T. Langtry, K.-W. Chang, C. Papagianni, J. Lee, J. Hirst, S. Erra, E. Flores, N. Righos, H. Castro and G. Spadini, IEDM Tech. Dig. 617 (2009).

  5. D. Fugazza, D. Ielmini, S. Lavizzari and A. L. Lacaita, IEDM Tech. Dig. 723 (2009).

  6. D. Fugazza, D. Ielmini, G. Montemurro and A.L. Lacaita, IEDM Tech. Dig. 652 (2010).

  7. D. Ielmini and Y. Zhang, J. Appl. Phys. 102, 054517 (2007).

    Article  Google Scholar 

  8. D. Ielmini, Phys. Rev. B 78, 035308 (2008).

    Article  Google Scholar 

  9. U. Russo, D. Ielmini, A. Redaelli and A. L. Lacaita, IEEE Trans. Electron Devices 53, 3032 (2006).

    Article  CAS  Google Scholar 

  10. D. Mantegazza, D. Ielmini, E. Varesi, A. Pirovano and A.L. Lacaita, IEDM Tech. Dig. 311 (2007).

  11. U. Russo, D. Ielmini, A. Redaelli and A. L. Lacaita, IEEE Trans. Electron Devices 55, 515 (2008).

    Article  Google Scholar 

  12. D. Ielmini, Mater. Res. Soc. Symp. Proc. 1251-H05-01 (2010).

  13. M. Boniardi, D. Ielmini, S. Lavizzari, A. L. Lacaita, A. Redaelli and A. Pirovano, IEEE Trans. Electron Devices 27, 2690 (2010).

    Article  Google Scholar 

  14. A. Pirovano, A. L. Lacaita, F. Pellizzer, S. A. Kostylev, A. Benvenuti, R. Bez, IEEE Trans. Electron Devices 51, 714 (2004).

    Article  Google Scholar 

  15. I. V. Karpov, M. Mitra, D. Kau, G. Spadini, Y. A. Kryukov, V. G. Karpov, J. Appl. Phys. 102, 124503 (2007).

    Article  Google Scholar 

  16. K. P. Chik, S. Y. Feng and S. K. Poon, Solid State Commun. 33, 1019 (1980).

    Article  CAS  Google Scholar 

  17. N. M. J. Conway, A. Ilie, J. Robertson and W. I. Milne, Appl. Phys. Lett. 73, 2456 (1998).

    Article  CAS  Google Scholar 

  18. L. L. Snead and S. J. Zinkle, Nucl. Instr. Methods B 191, 497 (2002).

    Article  CAS  Google Scholar 

  19. S. Roorda, W. C. Sinke, J. M. Poate, D. C. Jacobson, S. Dierker, B. S. Dennis, D. J. Eaglesham, F. Spaepen, and P. Fuoss, Phys. Rev. B 44, 3702 (1991).

    Article  Google Scholar 

  20. K. Koughia, Z. Shakoor, S. O. Kasap, and J. M. Marshall, J. Appl. Phys. 97, 033706 (2005).

    Article  Google Scholar 

  21. G. Tiwari, R. V. Ramanujan, M. R. Gonal, R. Prasad, P. Raj, B. P. Badguzar and G. L. Goswami, Mater. Sci. Eng. A304–306, 499 (2001).

    Article  Google Scholar 

  22. M. Boniardi and D. Ielmini, Appl. Phys. Lett. 98, 243506 (2011).

    Article  Google Scholar 

  23. L. Fritzsch and W. Bobe, phys. stat. sol. (b) 58, k49 (1973).

    Article  CAS  Google Scholar 

  24. A. E. Owen and J. M. Robertson, IEEE Trans. Electron Devices 20, 105 (1973).

    Article  CAS  Google Scholar 

  25. Y. H. Shih, M. H. Lee, M. Breitwisch, R. Cheek, J. Y. Wu, B. Rajendran, Y. Zhu, E. K. Lai, C. F. Chen, H. Y. Cheng, A. Schrott, E. Joseph, R. Dasaka, S. Raoux, H. L. Lung and C. Lam, IEDM Tech. Dig. 753 (2009).

  26. D. Ielmini and Y. Zhang, Appl. Phys. Lett. 90, 192102 (2007).

    Article  Google Scholar 

  27. D. Ielmini and M. Boniardi, Appl. Phys. Lett. 94, 091906 (2009).

    Article  Google Scholar 

  28. A. Yelon, B. Movaghar, and H. M. Branz, Phys. Rev. B 46, 12244 (1992).

    Article  CAS  Google Scholar 

  29. R. S. Crandall, Phys. Rev. B 43, 4057 (1991).

    Article  CAS  Google Scholar 

  30. S. Kohara, K. Kato, S. Kimura, H. Tanaka, T. Usuki, K. Suzuya,H. Tanaka, Y. Moritomo, T. Matsunaga, N. Yamada, et al., Appl. Phys. Lett. 89, 201910 (2006).

    Article  Google Scholar 

  31. S. Caravati, M. Bernasconi, T. D. Kühne, M. Krack and M. Parrinello, Appl. Phys. Lett. 91, 171906 (2007).

    Article  Google Scholar 

  32. T. Matsunaga, J. Akkola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R. O. Jones, N. Yamada, M. Takata and R. Kojima, Nature Mater. 10, 129 (2011).

    Article  CAS  Google Scholar 

  33. S. C. Agarwal and H. Fritzsche, Phys. Rev. B 10, 4351 (1974).

    Article  CAS  Google Scholar 

  34. M. Pollak, J. Non Cryst. Solids 11, 1 (1972).

    Article  CAS  Google Scholar 

  35. V. Ambegaokar, B. I. Halperin and J. S. Langer, Phys. Rev. B 4, 2612 (1971).

    Article  Google Scholar 

  36. P. Thomas, phys. stat. sol. (b) 71, 763 (1975).

    Article  CAS  Google Scholar 

  37. J. J. Hauser and A. Staudinger, Phys. Rev. B 8, 607 (1973).

    Article  CAS  Google Scholar 

  38. M. Pollak and J. J. Hauser, Phys. Rev. Lett. 31, 1304 (1973).

    Article  CAS  Google Scholar 

  39. J. C. Dyre, J. Appl. Phys 64, 2456 (1988).

    Article  Google Scholar 

  40. N. Tessler, Y. Preezant, N. Rappaport and Y. Roichman, Adv. Mater 21, 1 (2009).

    Article  Google Scholar 

  41. P. G. Debenedetti and F. H. Stillinger, Nature 410, 259 (2001).

    Article  CAS  Google Scholar 

  42. D. Ielmini, A. L. Lacaita and D. Mantegazza, IEEE Trans. Electron Devices 54, 308 (2007).

    Article  CAS  Google Scholar 

  43. D. Ielmini, D. Sharma, S. Lavizzari and A. L. Lacaita, IEEE Trans. Electron Devices 56, 1070 (2009).

    Article  CAS  Google Scholar 

  44. M. Boniardi, A. Redaelli, A. Pirovano, I. Tortorelli, D. Ielmini and F. Pellizzer, J. Appl. Phys. 105, 084506 (2009).

    Article  Google Scholar 

  45. D. Ielmini, S. Lavizzari, D. Sharma and A. L. Lacaita, Appl. Phys. Lett. 92, 193511 (2008).

    Article  Google Scholar 

  46. S. Lavizzari, D. Ielmini, D. Sharma and A. L. Lacaita, IEEE Trans. Electron Devices 56, 1078 (2009).

    Article  CAS  Google Scholar 

  47. D. Ielmini, S. Lavizzari, D. Sharma and A. L. Lacaita, IEDM Tech. Dig., 939 (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ielmini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ielmini, D., Fugazza, D. & Boniardi, M. Energy landscape models for conduction and drift in phase change memory. MRS Online Proceedings Library 1338, 104 (2011). https://doi.org/10.1557/opl.2011.1127

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2011.1127

Navigation