Skip to main content
Log in

Thermal and elastic properties of Ge-Sb-Te based phase-change materials

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Phase-change materials undergo a change in bonding mechanism upon crystallization, which leads to pronounced modifications of the optical properties and is accompanied by an increase in average bond lengths as seen by extended x-ray absorption fine structure (EXAFS), neutron and x-ray diffraction. The reversible transition between a crystalline and an amorphous phase and its related property contrast are already employed in non-volatile data storage devices, such as rewritable optical discs and electronic memories. The crystalline phase of the prototypical material GeSb2Te4 is characterized by resonant bonding and pronounced disorder, which help to understand their optical and electrical properties, respectively. A change in bonding, however, should also affect the thermal properties, which will be addressed in this study. Based on EXAFS data analyses it will be shown that the thermal and static atomic displacements are larger in the meta-stable crystalline state. This indicates that the bonds become softer in the crystalline phase. At the same time, the bulk modulus increases upon crystallization. These observations are confirmed by the measured densities of phonon states (DPS), which reveal a vibrational softening of the optical modes upon crystallization. This demonstrates that the change of bonding upon crystallization in phase-change materials also has a profound impact on the lattice dynamics and the resulting thermal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.R. Ovshinsky, “Reversible Electrical Switching Phenomena in Disordered Structures,” Physical Review Letters, vol. 21, 1968, p. 1450.

    Article  Google Scholar 

  2. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb, Te, pseudobinary for an optical disk memory,” Journal of Applied Physics, vol. 69, 1991, pp. 2849–2856.

    Article  CAS  Google Scholar 

  3. M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nature materials, vol. 6, 2007, pp. 824–832.

    Article  CAS  Google Scholar 

  4. D. Lencer, M. Salinga, and M. Wuttig, “Design Rules for Phase-Change Materials in Data Storage Applications,” Advanced Materials, vol. 23, May 2010, pp. 2030–2058.

    Article  Google Scholar 

  5. W. Wełnic, A. Pamungkas, R. Detemple, C. Steimer, S. Blügel, and M. Wuttig, “Unravelling the interplay of local structure and physical properties in phase-change materials,” Nature Materials, vol. 5, Dec. 2005, pp. 56–62.

    Article  Google Scholar 

  6. A. Kolobov, “Understanding the phase-change mechanism of rewritable optical media,” Nature Materials, vol. 3, 2004, pp. 703–708.

    Article  CAS  Google Scholar 

  7. R. Zallen, The Physics of Amorphous Solids, Wiley, 1983.

  8. P. Jóvári, I. Kaban, J. Steiner, B. Beuneu, A. Schöps, and M. Webb, “Local order in amorphous Ge2Sb2Te5 and GeSb2Te4,” Physical Review B, vol. 77, 2008, p. 035202.

    Article  Google Scholar 

  9. D. Baker, M. Paesler, G. Lucovsky, S. Agarwal, and P. Taylor, “Application of Bond Constraint Theory to the Switchable Optical Memory Material Ge2Sb2Te5,” Physical Review Letters, vol. 96, 2006, pp. 5–7.

    Google Scholar 

  10. T. Matsunaga and N. Yamada, “Structural investigation of GeSb2Te4: A high-speed phase-change material,” Physical Review B, vol. 69, Mar. 2004, pp. 1–8.

    Article  Google Scholar 

  11. P.B. Littlewood and V. Heine, “The infrared effective charge in IV–VI compounds : I. A simple one-dimensional model,” vol. 12, 1979, p. 4431.

    CAS  Google Scholar 

  12. P.B. Littlewood, “The infrared effective charge in IV–VI compounds: II. A three dimensional calculation,” vol. 12, 1979, p. 4441.

    CAS  Google Scholar 

  13. D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nature Materials, vol. 7, 2008, p. 972–977.

    Article  CAS  Google Scholar 

  14. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nature Materials, vol. 7, 2008, p. 653–658.

    Article  CAS  Google Scholar 

  15. B. Huang and J. Robertson, “Bonding origin of optical contrast in phase-change memory materials,” Physical Review B, vol. 81, 2010, p. 1204.

    Google Scholar 

  16. M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wełnic, M. Gillessen, and R. Dronskowski, “The role of vacancies and local distortions in the design of new phase-change materials.,” Nature materials, vol. 6, 2007, pp. 122–8.

  17. S. Shamoto, N. Yamada, T. Matsunaga, T. Proffen, J.W. Richardson Jr., J.H. Chung, and T. Egami, “Large displacement of germanium atoms in crystalline Ge2Sb2Te5,” Appl. Phys. Lett., vol. 86, 2005, p. 1904.

    Article  Google Scholar 

  18. J. M. van Eijk, C. Bichara, P. Zalden, C. Braun, S. Buller, W. Bensch, and M. Wuttig, “Differences in local order of amorphous and crystalline Ge1Sb2Te4 probed by X-Ray absorption spectroscopy,” submitted to Phys. Rev. B, 2011.

  19. T. Blachowicz, M.G. Beghi, G. Güntherodt, B. Beschoten, H. Dieker, and M. Wuttig, “Crystalline phases in the GeSb2Te4 alloy system: Phase transitions and elastic properties,” Journal of Applied Physics, vol. 102, 2007, p. 093519.

    Article  Google Scholar 

  20. These authors presented a corrected transformation of measured elastic constants from [17] to the bulk modulus: S. Caravati, M. Bernasconi, T. Kühne, M. Krack, and M. Parrinello, “Unravelling the Mechanism of Pressure Induced Amorphization of Phase Change Materials,” Physical Review Letters, vol. 102, 2009, pp. 1–4.

    Article  Google Scholar 

  21. I. Park, J. Jung, S. Ryu, K. Choi, B. Yu, Y. Park, S. Han, and Y. Joo, “Thermomechanical properties and mechanical stresses of Ge2Sb2Te5 films in phase-change random access memory,” Thin Solid Films, vol. 517, Nov. 2008, pp. 848–852.

    Article  CAS  Google Scholar 

  22. K. Rickers, U. Brüggmann, W. Drube, M. Herrmann, J. Heuer, E. Welter, H. Schulte-Schrepping, and H. Schulz-Ritter, “New XAFS Facility for In-Situ Measurements at Beamline C at HASYLAB,” AIP Conference Proceedings, vol. 879, 2007, p. 907.

    Article  CAS  Google Scholar 

  23. B. Ravel and M. Newville, “ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT.,” Journal of synchrotron radiation, vol. 12, Jul. 2005, pp. 537–41.

  24. A.L. Ankudinov, J.J. Rehr, and S.D. Conradson, “Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure,” Physical Review B, vol. 58, Sep. 1998, pp. 7565–7576.

    Article  CAS  Google Scholar 

  25. H.C. Wille, R.P. Hermann, I. Sergueev, O. Leupold, P.V.D. Linden, B.C. Sales, F. Grandjean, G.J. Long, R. Rüffer, and Y.V. Shvydko, “Antimony vibrations in skutterudites probed by 121Sb nuclear inelastic scattering,” Phys. Rev. B, vol. 76, 2007, p. 140301.

    Article  Google Scholar 

  26. H.C. Wille, R.P. Hermann, I. Sergueev, U. Pelzer, A. Möchel, T. Claudio, R. Rüffer, A. Said, and Y.V. Shvydko, “Nuclear forward and inelastic spectroscopy on 125Te and Sb2-125Te3,” Europhysics Letters, vol. 91, 2010, p. 62001.

    Article  Google Scholar 

  27. D.C. Koningsberger and R. Prins, eds., X-Ray Absorption, John Wiley & Sons Ltd, 1988.

  28. B. Cordero, V. Gómez, A.E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, and S. Alvarez, “Covalent radii revisited,” Dalton transactions (Cambridge, England : 2003), Jun. 2008, pp. 2832–2838.

  29. J.P. Gaspard, A. Pellegatti, F. Marinelli, and C. Bichara, “Peierls instabilities in covalent structures I. Electronic structure, cohesion and the Z=8-N rule,” Philosophical Magazine B, vol. 77, Mar. 1998, pp. 727–744.

    Article  CAS  Google Scholar 

  30. D. Lencer, “Design rules, local structure and lattice dynamics of phase change materials for data storage applications,” RWTH Aachen, 2011.

  31. R. Rüffer and A.I. Chumakov, “Nuclear inelastic scattering,” Hyperfine Interactions, vol. 128, Jul. 2000, pp. 255–272.

    Article  Google Scholar 

  32. T. Matsunaga, N. Yamada, R. Kojima, S. Shamoto, M. Sato, H. Tanida, T. Uruga, S. Kohara, M. Takata, P. Zalden, G. Bruns, I. Sergueev, H.C. Wille, R.P. Hermann, and M. Wuttig, “Phase change materials: Vibrational softening upon crystallization and its impact on thermal properties,” Advanced Functional Materials, 2011.

  33. N. Maley, D. Beeman, and J.S. Lannin, “Dynamics of tetrahedral networks Amorphous Si and Ge,” Physical Review B, vol. 38, 1988, p. 10611.

    Article  CAS  Google Scholar 

  34. G. Nellin and G. Nilsson, “Phonon Density of States in Germanium at 80 K Measured by Neutron Spectrometry,” Physical Review B, vol. 5, 1972, p. 3151.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zalden, P., Bichara, C., Eijk, J.v. et al. Thermal and elastic properties of Ge-Sb-Te based phase-change materials. MRS Online Proceedings Library 1338, 603 (2011). https://doi.org/10.1557/opl.2011.1030

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2011.1030

Navigation