Skip to main content

Advertisement

Log in

Environmental impact of the nuclear fuel cycle: Fate of actinides

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The resurgence of nuclear power as a strategy for reducing greenhouse gas (GHG) emissions has, in parallel, revived interest in the environmental impact of actinides. Just as GHG emissions are the main environmental impact of the combustion of fossil fuels, the fate of actinides, consumed and produced by nuclear reactions, determines whether nuclear power is viewed as an environmentally “friendly” source of energy. In this article, we summarize the sources of actinides in the nuclear fuel cycle, how actinides are separated by chemical processing, the development of actinide-bearing materials, and the behavior of actinides in the environment. At each stage, actinides present a unique and complicated behavior because of the 5f electronic configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.C. Ewing, in Energy, Waste and the Environment: a Geochemical Perspective, R. Gieré, P. Stille, Eds. (The Geological Society, London, 2004), Special Publication 236, pp. 7–23.

    Google Scholar 

  2. K.T. Moore, G. van der Laan, Rev. Mod. Phys. 81, 235 (2009).

    Google Scholar 

  3. K.T. Moore, Micron 41, 336 (2010).

    Google Scholar 

  4. D. Albright, K. Kramer, Bull. At. Sci. 14 (November/December, 2004).

  5. A. Hedin, “Spent Nuclear Fuel—How Dangerous is It?” (SKB Tech. Rep. 97–13, Swedish Nuclear Fuel and Waste management Co., Stockholm, 1997), p. 60.

  6. F.N. von Hippel, Science 293, 2397 (2001).

    Google Scholar 

  7. G.T. Seaborg, Adventures in the Atomic Age, From Watts to Washington (Farrar, Straus, and Giroux, New York, 2001).

    Google Scholar 

  8. P.D. Wilson, The Nuclear Fuel Cycle (Oxford University Press, Oxford, 1996).

    Google Scholar 

  9. J.E. Birkett, M.J. Carrott, O.D. Fox, C.J. Jones, C.J. Maher, C.V. Roube, R.J. Taylor, D.A. Woodhead, Chimia 59, 898 (2005).

    Google Scholar 

  10. J.H. Miles, in Science and Technology of Tributyl Phosphate, W.W. Schulz, J.D. Navratil, Eds. (CRC Press, Florida, 1990) Vol. 3, Part 2, pp. 11.

    Google Scholar 

  11. E.N. Rizkalla, G.R. Choppin, in Handbook on the Physics and Chemistry of Rare Earths, K.A. Gschneidner, L. Eyring, Jr., G.R. Choppin, G.H. Lander, Eds. (Elsevier Science, New York, 1994), Vol. 18, p. 529.

    Google Scholar 

  12. R.G. Pearson, J. Am. Chem. Soc. 85, 3533 (1963).

    Google Scholar 

  13. K.L. Nash, Solvent Extr. Ion Exch. 11, 729 (1993).

    Google Scholar 

  14. I. Hagström, L. Spjuth, A. Enarsson, J.O. Liljenzin, M. Skalberg, M.J. Hudson, P.B. Iveson, C. Madic, P. Y. Cordier, C. Hill, N. François, Solvent Extr. Ion Exch. 17, 221 (1999).

    Google Scholar 

  15. M.G.B. Drew, P.B. Iveson, M.J. Hudson, J.O. Liljenzin, L. Spjuth, P.-Y. Cordier, Å. Enarsson, C. Hill, C. Madic, J. Chem. Soc., Dalton Trans. 821 (2000).

  16. N. Boubals, M.G.B. Drew, C. Hill, M.J. Hudson, P.B. Iveson, C. Madic, M.L. Russel, T.G.A. Youngs, J. Chem. Soc., Dalton Trans. 55 (2002).

  17. Z. Kolarik, U. Müllich, F. Gassner, Solvent Extr. Ion Exch. 17, 23 (1999).

    Google Scholar 

  18. Z. Kolarik, U. Müllich, F. Gassner, Solvent Extr. Ion Exch. 17, 1155 (1999).

    Google Scholar 

  19. J.M. Adnet, L. Donnet, P. Brossard, J. Bourges, U.S. patent 5609745 (March 11, 1997).

  20. I. Muller, W.J. Weber, E.R Vance, G. Wicks, D. Karraker, in Advances in Plutonium Chemistry 1967–2000, D.C. Hoffman, Ed. (The American Nuclear Society, La Grange Park, Illinois, 2002), pp. 260–307.

    Google Scholar 

  21. W.J. Weber, A. Navrotsky, S. Stefanosky, E.R. Vance, E. Vernaz, MRS Bull. 34 (1), 46 (2009).

    Google Scholar 

  22. R.C. Ewing, Proc. Natl. Acad. Sci. 96 (7), 3432 (1999).

    Google Scholar 

  23. R.C. Ewing, W.J. Weber, J. Lian, Appl. Phys. Rev. 95 (11), 5949 (2004).

    Google Scholar 

  24. R.C. Ewing, W.J. Weber, in The Chemistry of the Actinide and Transactinide Elements, L.R. Morss, N. Edlestein, J. Fuger, Eds. (Springer, Amsterdam, in press), Vol. 6, 2010.

    Google Scholar 

  25. W.J. Weber, R.C. Ewing, C.A. Angell, G.W. Arnold, A.N. Cormack, J.M. Delaye, D.L. Griscom, L.W. Hobbs, A. Navrotsky, D.L. Price, A.M. Stoneham, M.C. Weinberg, J. Mater. Res. 12, 1946 (1997).

    Google Scholar 

  26. W.J. Weber, R.C. Ewing, C.R.A. Catlow, T. Diaz de la Rubia, L.W. Hobbs, C. Kinoshita, H.J. Matzke, A.T. Motta, M. Nastasi, E.H.K. Salje, E.R. Vance, S.J. Zinkle, J. Mater. Res. 13, 1434 (1998).

    Google Scholar 

  27. G.R. Choppin, Radiochim. Acta 32, 43 (1983).

    Google Scholar 

  28. R.J. Silva, H. Nitsche, in Advances in Plutonium Chemistry 1967–2000, D.C. Hoffman, Ed. (The American Nuclear Society, La Grange Park, Illinois, 2002), pp. 89–117.

    Google Scholar 

  29. S.D. Conradson, Appl. Spectrosc. 52 (7), 252A (1998).

    Google Scholar 

  30. W. Runde, M.P. Neu, S.D. Conradson, D. Li, M. Lin, D.M. Smith, C.E. Van Pelt, Y. Xu, Geochem. Soil Radionuclides 59, 45 (2002).

    Google Scholar 

  31. H. Boukhalfa, S.D. Reilly, W.H. Smith, M.P. Neu, Inorg. Chem. 43, 5816 (2004).

    Google Scholar 

  32. I. Al Mahamid, K.A. Becraft, Radiochim. Acta 68, 63 (1995).

    Google Scholar 

  33. G. Meinrath, J.I. Kim, Radiochim. Acta 52/53, 29 (1991).

    Google Scholar 

  34. R.J. Silva, G. Bidoglio, M.H. Rand, P.B. Robouch, H. Wanner, I. Puigdomenech, in Chemical Thermodynamics of Americium (North-Holland Elsevier Science B.V., Amsterdam, The Netherlands, 1995).

    Google Scholar 

  35. P. Vitorge, Radiochim. Acta 58/59, 105 (1992).

    Google Scholar 

  36. R.J. Lemire, J. Fuger, H. Nitsche, P. Potter, M.H. Rand, J. Rydberg, K. Spahiu, J.C. Sullivan, W.J. Ullman, R. Vitorge, H. Wanner, Chemical Thermodynamics of Neptunium and Plutonium (Elsevier Science B.V., Amsterdam, The Netherlands, 2001).

    Google Scholar 

  37. R.J. Lemire, F. Garisto (ROE 1LO Rep. No. AECL-10009, 1989).

  38. Grenthe, J. Fuger, R.J.M. Konings, R.J. Lemire, A.B. Muller, C. Nguyen-Trung, H. Wanner, Chemical Thermodynamics of Uranium (North-Holland Elsevier Science Publishers, Amsterdam, The Netherlands, 1992).

    Google Scholar 

  39. V. Neck, W. Runde, J.I. Kim, J. Alloys Compd. 225, 295 (1995).

    Google Scholar 

  40. W. Runde, M.P. Neu, D.L. Clark, Geochim. Cosmochim. Acta 60 (12), 2065 (1996).

    Google Scholar 

  41. A.R. Felmy, D. Rai, R.W. Fulton, Radiochim. Acta 50 (4), 193 (1990).

    Google Scholar 

  42. L.F. Rao, D. Rai, A.R. Felmy, R.W. Fulton, C.F. Novak, Radiochim. Acta 75 (3), 141 (1996).

    Google Scholar 

  43. D.W. Efurd, W. Runde, J.C. Banar, D.R. Janecky, J.P. Kaszuba, P.D. Palmer, F.R. Roensch, C.D. Tait, Environ. Sci. Technol. 32, 3893 (1998).

    Google Scholar 

  44. H. Nitsche, R.C. Gatti, E.M. Standifer, S.C. Lee, A. Muller, T. Prussin, R.S. Deinhammer, H. Maurer, K. Becraft, S. Leung, S.A. Carpenter, (YMP Milestone Rep. 3010, No. LA-12562-MS, 1993).

  45. J.P. Kaszuba, W. Runde, Environ. Sci. Technol. 33, 4427 (1999).

    Google Scholar 

  46. D.J. Wronkiewicz, E.C. Buck, in Uranium: Mineralogy, Geochemistry, and the Environment, P.B. Burns, R.J. Finch, Eds. (Mineralogical Society of America, Washington DC, 1999), Vol. 38, pp. 475–494.

    Google Scholar 

  47. P.C. Burns, A.L. Klingensmith, Elements 2, 351 (2006).

    Google Scholar 

  48. A.B. Kersting, D.W. Efurd, D.L. Finnegan, D.J. Rokop, D.K. Smith, J.L. Thompson, Nature 397, 56 (1999).

    Google Scholar 

  49. A.P. Novikov, S.N. Kalmykov, S. Utsunomiya, R.C. Ewing, F. Horreard, A. Merkulov, S.B. Clark, V.V. Tkachev, B.F. Myasoedov, Science 314, 638 (2006)

    Google Scholar 

  50. V. Neck, M. Altmaier, T. Fanghänel, C.R. Chim. 10, 959 (2007).

    Google Scholar 

  51. D. Rai, R.J. Serne, J.L. Swanson, J. Environ. Qual. 9, 417 (1980)

    Google Scholar 

  52. G.R. Choppin, Radiochim. Acta 58/59, 113 (1992).

    Google Scholar 

  53. P. Zeh, J.I. Kim, CM. Marquardt, R. Artinger, Radiochim. Acta 87, 23 (1999)

    Google Scholar 

  54. K.H. Lieser, U. Mohlenweg, Radiochim. Acta 43, 27 (1988).

    Google Scholar 

  55. M.C. Duff, D.B. Hunter, I.R. Triay, P.M. Bertsch, D.T. Reed, S.R. Sutton, G. Shea McCarthy, J. Kitten, P. Eng, S.J. Chipera, D.T. Vaniman, Environ. Sci. Technol. 33 (13), 2163 (1999).

    Google Scholar 

  56. S.D. Reilly, W.K. Myers, S.A. Stout, D.M. Smith, M.A. Ginder-Vogel, M.P Neu presented at the Plutonium Futures—The Science: Third Topical Conference on Plutonium and Actinides, 2003 (unpublished).

  57. S.A. Stout, S.D. Reilly, D.M. Smith, W.K. Myers, M.A. Ginder-Vogel, S. Skanthakumar, L. Soderholm, M.P. Neu, presented at the Plutonium Futures—The Science: Third Topical Conference on Plutonium and Actinides, New Mexico, 2003.

  58. W.H. Runde, in Los Alamos Science, N.G. Cooper, Ed. (Los Alamos National Laboratory, Los Alamos, 2000), Vol. 26, pp. 392–415.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ewing, R.C., Runde, W. & Albrecht-Schmitt, T.E. Environmental impact of the nuclear fuel cycle: Fate of actinides. MRS Bulletin 35, 859–866 (2010). https://doi.org/10.1557/mrs2010.712

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.712

Navigation