Skip to main content
Log in

Developments in characterizing soft matter

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Soft matter—also known as complex fluids—is a field of growing interest and importance, spanning many classes of materials, including polymers, biopolymers, colloids, and liquid crystals. Different approaches for microstructural characterization are more appropriate than those used for hard (and usually fully crystallized) materials such as metals and inorganic materials because of the time and length scales involved. This article discusses a range of techniques applicable to the characterization of soft matter, including environmental scanning electron microscopy (SEM) and microrheology. The former offers two key advantages for this class of material over conventional SEM because it requires neither a high vacuum—which is a problem for hydrated samples—nor that an insulator be coated with a conductive material. Microrheology is well suited to small volumes of fluid with low moduli that may be heterogeneous; it is capable of measuring gelation in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A.L. Jones, Soft Machines (OUP, New York, 2004).

    Google Scholar 

  2. L. Jenkins, A.M. Donald, Scanning 19, 92 (1997).

    Google Scholar 

  3. P. Meredith, A.M. Donald, N. Meller, C. Hall, J. Mater. Sci. 39, 997 (2003).

    Google Scholar 

  4. J. Keddie, P. Meredith, R. Jones, A. Donald, Langmuir 12, 3793 (1996).

    Google Scholar 

  5. K.I. Dragnevski, A.A. Donald, Prog. Org. Coat. 61, 63 (2008).

    Google Scholar 

  6. G.D. Danilatos, J. Microsc. 162, 391 (1990).

    Google Scholar 

  7. G.D. Danilatos, Adv. Electron. Electron Phys. 71, 109 (1988).

    Google Scholar 

  8. A. Donald, Nat. Mater. 2, 51 (2003).

    Google Scholar 

  9. D.J. Stokes, S.M. Rea, S. Best, W. Bonfi eld, Scanning 25, 181 (2003).

    Google Scholar 

  10. L. Muscariello, F. Rosso, G. Marino, A. Giordano, M. Barbarasi, G. Cafiero, A. Barbarisi, J. Cell. Physiol. 205, 328 (2005).

    Google Scholar 

  11. S. Sorbo, A. Basile, R.C. Cobianchi, Plant Biosyst. 142, 355 (2008).

    Google Scholar 

  12. M. Iliescu, C.D. Hoemann, M.S. Shive, A. Chenite, M.D. Buschmann, Microsc. Res. Tech. 71, 236 (2008).

    Google Scholar 

  13. L. Muscariello, F. Rosso, G. Marino, M. Barbarisi, G. Cafi ero, A. Barbarisi, J. Cell. Physiol. 214, 769 (2008).

    Google Scholar 

  14. S. Kirk, J. Skepper, A.M. Donald, J. Microsc. (Oxford) 233, 205 (2009).

    Google Scholar 

  15. T. Zheng, K.W. Waldron, A.M. Donald, Planta 230, 1105 (2009).

    Google Scholar 

  16. A.K. Pathan, J. Bond, R.E. Gaskin, Micron 39, 1049 (2008).

    Google Scholar 

  17. A. Bensalem-Fnayou, N. Jellouli, B. Bouamama, A. Mliki, A. Ghorbel, Scanning 31, 127 (2009).

    Google Scholar 

  18. K. Koch, I.C. Blecher, G. Koenig, S. Kehraus, W. Barthlott, Funct. Plant Biol. 36, 339 (2009).

    Google Scholar 

  19. Y.M. Zheng, D. Han, J. Zhai, L. Jiang, Appl. Phys. Lett. 92 (2008).

  20. D. Kolb, M. Muller, Ann. Bot. 94, 515 (2004).

    Google Scholar 

  21. B.L. Thiel, A.M. Donald, Ann. Bot. 82, 727 (1998).

    Google Scholar 

  22. A. Donald, F. Baker, A. Smith, K. Waldron Ann. Bot. 92, 73 (2003).

    Google Scholar 

  23. M. Eder, S. Stanzl-Tschegg, I. Burgert, Wood Sci. Technol. 42, 679 (2008).

    Google Scholar 

  24. D.A. Patterson, A. Havill, S. Costello, Y.H. See-Toh, A.G. Livingston, A. Turner, Sep. Purif. Technol. 66, 90 (2009).

    Google Scholar 

  25. Y.K. Li, T.W. Xu, Z.Y. Ouyang, X.C. Lin, H.L. Liu, Z.Y. Hao, P.L. Yang, J. Appl. Polym. Sci. 113, 3510 (2009).

    Google Scholar 

  26. J. Wang, F. Dismer, J. Hubbuch, M. Ulbricht, J. Memb. Sci. 320, 456 (2008).

    Google Scholar 

  27. A.K. Bajpai, D.D. Mishra, J. Appl. Polym. Sci. 107, 541 (2008).

    Google Scholar 

  28. Y. P. Wei, F. Cheng, Carbohydr. Polym. 68, 734 (2007).

    Google Scholar 

  29. X.F. Hao, X.Q. Zhang, Mater. Lett. 61, 1319 (2007).

    Google Scholar 

  30. D.J. Stokes, B.L. Thiel, A.M. Donald, Langmuir 14, 4402 (1998).

    Google Scholar 

  31. N. Franz, M.O. Ahlers, A. Abdullah, H. Hohenberg, J. Mater. Sci. 41, 4561 (2006).

    Google Scholar 

  32. M. Toth, W.R. Knowles, B.L. Thiel, Appl. Phys. Lett. 88 (2006).

  33. D.J. Stokes, Philos. Trans. R. Soc. London, Ser. A 361, 2771 (2003).

    Google Scholar 

  34. S.J. Williams, A.M. Donald, B.L. Thiel, D.E. Morrison, Scanning 27, 190 (2005).

    Google Scholar 

  35. B.L. Thiel, Int. Mater. Rev. 49, 109 (2004).

    Google Scholar 

  36. T. Waigh, Rep. Prog. Phys. 68, 685 (2005).

    Google Scholar 

  37. T.G. Mason, D.A. Weitz, Phys. Rev. Lett. 74, 1250 (1995).

    Google Scholar 

  38. F.K. Oppong, L. Rubatat, B.J. Frisken, A.E. Bailey, J.R. de Bruyn, Phys. Rev. E 73, 041405 (2006).

    Google Scholar 

  39. M.L. Gardel, M.T. Valentine, J.C. Crocker, A.R. Bausch, D.A. Weitz, Phys. Rev. Lett. 91, 158302 (2003).

    Google Scholar 

  40. M.L. Gardel, J.H. Shin, F.C. MacKintosh, L. Mahadevan, P. Matsudaira, D.A. Weitz, Phys. Rev. Lett. 93, 188102 (2004).

    Google Scholar 

  41. H.A. Houghton, I.A. Hasnain, A.M. Donald, Eur. Phys. J. E 25, 119 (2008).

    Google Scholar 

  42. T.H. Larsen, E.M. Furst, Phys. Rev. Lett. 100, 146001 (2008).

    Google Scholar 

  43. J.D. Ferry, Viscoelastic Properties of Polymers 3rd ed. (New York, Wiley, 1980).

    Google Scholar 

  44. A.M. Corrigan, A.M. Donald, Eur. Phys. J. E 28, 457 (2009).

    Google Scholar 

  45. J. Crocker, M. Valentine, E. Weeks, T. Gisler, P. Kaplan, A. Yodh, D. Weitz, Phys. Rev. Lett. 85, 888 (2000).

    Google Scholar 

  46. M. Valentine, P. Kaplan, D. Thota, J. Crocker, T. Gisler, R. Prud’homme, M. Beck, D. Weitz, Phys. Rev. E 64, 061506 (2001).

    Google Scholar 

  47. S.R. Heidemann, D. Wirtz, Trends Cell Biol. 14, 160 (2004).

    Google Scholar 

  48. Y. Tseng, J.S.H. Lee, T.P. Kole, I. Jiang, D. Wirtz, J. Cell. Sci. 110, 2159 (2004).

    Google Scholar 

  49. P. Panorchan, J.S.H. Lee, T.P. Kole, Y. Tseng, D. Wirtz, Biophys. J. 91, 3499 (2006).

    Google Scholar 

  50. D. Wirtz, Annu. Rev. Biophys. 38, 301 (2009).

    Google Scholar 

  51. B.R. Daniels, B.C. Masi, D. Wirtz, Biophys. J. 90, 4712 (2006).

    Google Scholar 

  52. E.L. Baker, R.T. Bonnecaze, M.H. Zamao, Biophys. J. 97, 1013 (2009).

    Google Scholar 

  53. C. Picard, A. Donald, Eur. Phys. J.E 30, 127 (2009).

    Google Scholar 

  54. Y.Z. Yoon, J. Kotar, G. Yoon, P. Cicuta, Phys. Biol. 5, 8 (2008).

    Google Scholar 

  55. A. Yao, M. Tassieri, M. Padgett, J. Cooper, Lab Chip 9, 2568 (2009).

    Google Scholar 

  56. J. Penfold, P. Schurtenberger, Curr. Opin. Colloid Interface Sci. 14, 379 (2009).

    Google Scholar 

  57. H. Ogawa, T. Kanaya, K. Nishida, G. Matsuba, J.P. Majewski, E. Watkins, J. Chem. Phys. 131 (2009).

  58. J.P. de Silva, S.J. Martin, R. Cubitt, M. Geoghegan, Europhys. Lett. 86 (2009).

  59. E. Pechkova, S. Tripathi, C. Nicolini, J. Synchrotron Radiat. 16, 330 (2009).

    Google Scholar 

  60. W. Bras, G.E. Derbyshire, A.J. Ryan, G.R. Mant, F. Belton, R.A. Lewis, C.J. Hall, G.M. Greaves, Nucl. Instrum. Methods Phys. Res. A 326, 587 (1993).

    Google Scholar 

  61. W. Bras, I.P. Dolbnya, D. Detollenaere, R. van Tol, M. Malfois, G.N. Greaves, A.J. Ryan, E. Heeley, J. Appl. Crystallogr. 36, 791 (2003).

    Google Scholar 

  62. A.M. Donald, T.A. Waigh, P.J. Jenkins, M.J. Gidley, M. Debet, A. Smith, in Starch Structure and Function, P.J. Frazier, A.M. Donald, P. Richmond, Eds. (London, RSC, 1997).

    Google Scholar 

  63. M.M. Mok, S. Pujari, W.R. Burghardt, C.M. Dettmer, S.T. Nguyen, C.J. Ellison, J.M. Torkelson, Macromolecules 41, 5818 (2008).

    Google Scholar 

  64. L. Corvazier, L. Messe, C.L.O. Salou, R.N. Young, J.P.A. Fairclough, A.J. Ryan, J. Mater. Chem. 11, 2864 (2001).

    Google Scholar 

  65. A.J. Ryan, in Structure Development During Polymer Processing, A.M. Cunha, S. Fakirov, Eds. (New York, Springer, 2000) pp. 69–91.

    Google Scholar 

  66. H. Benoit, D. Decker, J.S. Higgins, C. Picot, J.P. Cotton, B. Farnoux, G. Jannink, R. Ober, Nat. Phys. Sci. 245, 13 (1973).

    Google Scholar 

  67. L.J. Magid, R. Schurtenberger, MRS Bull. 28, 907 (2003).

    Google Scholar 

  68. D.J.F. Taylor, R.K. Thomas, J. Penfold, Adv. Colloid Interface Sci. 132, 69 (2007).

    Google Scholar 

  69. J. Penfold, Curr. Opin. Colloid Interface Sci. 7, 139 (2002).

    Google Scholar 

  70. R.S. Graham, J. Bent, N. Clarke, L.R. Hutchings, R.W. Richards, T. Gough, D.M. Hoyle, O.G. Harlen, I. Grillo, D. Auhl, T.C.B. McLeish, Soft Matter 5, 2383 (2009).

    Google Scholar 

  71. M.L. Coote, D.H. Gordon, L.R. Hutchings, R.W. Richards, R.M. Dalgliesh, Polymer 44, 7689 (2003).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donald, A.M. Developments in characterizing soft matter. MRS Bulletin 35, 702–707 (2010). https://doi.org/10.1557/mrs2010.682

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.682

Navigation