Skip to main content
Log in

Opportunities and challenges for first-principles materials design and applications to Li battery materials

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The idea of first-principles methods is to determine the properties of materials by solving the basic equations of quantum mechanics and statistical mechanics. With such an approach, one can, in principle, predict the behavior of novel materials without the need to synthesize them and create a virtual design laboratory. By showing several examples of new electrode materials that have been computationally designed, synthesized, and tested, the impact of first-principles methods in the field of Li battery electrode materials will be demonstrated. A significant advantage of computational property prediction is its scalability, which is currently being implemented into the Materials Genome Project at the Massachusetts Institute of Technology. Using a high-throughput computational environment, coupled to a database of all known inorganic materials, basic information on all known inorganic materials and a large number of novel “designed” materials is being computed. Scalability of high-throughput computing can easily be extended to reach across the complete universe of inorganic compounds, although challenges need to be overcome to further enable the impact of first-principles methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.W. Eagar, Technol. Rev. 98, 43 (1995).

    Google Scholar 

  2. M. Whittingham, Science 192, 1126 (1976).

    Google Scholar 

  3. J. Hafner, C. Wolverton, G. Ceder, MRS Bull. 31, 659 (2006).

    Google Scholar 

  4. G. Ceder, M.K. Aydinol, Solid State Ionics 109, 151 (1998).

    Google Scholar 

  5. F. Zhou, M. Cococcioni, C. Marianetti, D. Morgan, G. Ceder, Phys. Rev. B 70, 235121 (2004).

    Google Scholar 

  6. L. Wang, T. Maxisch, G. Ceder, Phys. Rev. B 73, 195107 (2006).

    Google Scholar 

  7. L. Wang, T. Maxisch, G. Ceder, Chem. Mater. 19, 543 (2007).

    Google Scholar 

  8. V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, J. Phys. Condens. Matter 9, 767 (1997).

    Google Scholar 

  9. A. Van der Ven, G. Ceder, Electrochem. Solid-State Lett. 3, 301 (2000).

    Google Scholar 

  10. A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997).

    Google Scholar 

  11. D. Morgan, A. Van der Ven, G. Ceder, Electrochem. Solid-State Lett. 7, A30 (2004).

    Google Scholar 

  12. B. Kang, G. Ceder, Nature 458, 190 (2009).

    Google Scholar 

  13. S. Ping Ong, L. Wang, B. Kang, G. Ceder, Chem. Mater. 20, 1798 (2008).

    Google Scholar 

  14. A. Kayyar, H. Qian, J. Luo, Appl. Phys. Lett. 95, 221905 (2009).

    Google Scholar 

  15. S.P. Ong, A. Jain, G. Hautier, B. Kang, G. Ceder, Electrochem. Commun. 12, 427 (2010).

    Google Scholar 

  16. S. Kim, J. Kim, H. Gwon, K. Kang, J. Electrochem. Soc. 156, A635 (2009).

    Google Scholar 

  17. G. Chen, T.J. Richardson, J. Power Sources 195, 1221 (2010).

    Google Scholar 

  18. K. Kang, Y. Meng, J. Breger, C. Grey, G. Ceder, Science 311, 977 (2006).

    Google Scholar 

  19. J. Reed, G. Ceder, Chem. Rev. 104, 4513 (2004).

    Google Scholar 

  20. J. Reed, G. Ceder, Electrochem. Solid-State Lett. 5, A145 (2002).

    Google Scholar 

  21. The Materials Genome; www.materialsgenome.org.

  22. A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, J.B. Goodenough, J. Electrochem. Soc. 144, 2581 (1997).

    Google Scholar 

  23. N.A. Godshall, I.D. Raistrick, R.A. Huggins, J. Electrochem. Soc. 131, 543 (1984).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceder, G. Opportunities and challenges for first-principles materials design and applications to Li battery materials. MRS Bulletin 35, 693–701 (2010). https://doi.org/10.1557/mrs2010.681

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.681

Navigation