Skip to main content
Log in

Nanotube responsive materials

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Individual nanotubes made of carbon, boron nitride, iron, silicon, or other materials have properties such as high strength, toughness, electrical and thermal conductivity, and light weight that cannot be matched by conventional materials. Nanotubes also change their properties in response to external fields and change one type of energy into another, which are useful for design. This article explores three main steps in exploiting responsive materials based on nanotubes: nanotube synthesis, macroscale material fabrication, and incorporation into device structures for novel applications. Nanotubes are always synthesized as individual particles in the form of powders, smoke particles, or aligned forests. To be industrially important, nanotubes generally must be processed to form derivative materials such as functionalized/coated powders and forests and macroscale intermediate materials such as sheets, ribbon, and yarn. The processed nanotubes are then used to develop responsive materials and devices that are able to resist, react to, or generate energy from their environment. This article provides background information and ideas on how to develop nanotube responsive materials for everyday use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Mallik, J. Abot, Y. Song, G. Maheshwari, W. Cho, E. Head, M. Dadhania, W. Li, V. Shanov, C. Jayasinghe, P. Salunke, G. Li, D. Hurd, Y. Yun, S. Yarmolenko, J. Sankar, P. Phillips, R.A. Komoroski, W.-J. Chu, A. Bhattacharya, N. Watts, M.J. Schulz, in Carbon Nanotubes: Synthesis, Properties and Applications, M. Umeno, P.R. Somani, Eds. (Applied Science Innovations, India, 2009).

    Google Scholar 

  2. M.J. Schulz, A. Kelkar, M. Sundaresan, Nanoengineering of Structural, Functional and Smart Materials (CRC Press, NY, 2006).

    Google Scholar 

  3. A. Jorio, G. Dresselhaus, M.S. Dresselhaus, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties (Springer-Verlag, NY, 2008).

    Google Scholar 

  4. Southwest NanoTechnologies, CNT synthesis using a fl uidized bed: http://swentnano.com/best/index.php.

  5. Nanolab, CNT and BuckyPaper: www.nano-lab.com/buckypaper.html.

  6. Florida State University, buckypaper development: www.buckypaper.com/.

  7. Nanocomp Technologies, fl oating catalyst method: www.nanocomptech.com/.

  8. G.S.B. McKeea, C.P. Decka, K.S. Vecchio, Carbon 47, 8 (2009).

    Google Scholar 

  9. General Nano LLC, nanotube materials producer: www.generalnanollc.com.

  10. University of Cincinnati, Nanoworld and Smart Materials and Devices Laboratory: www.min.uc.edu/nanoworldsmart.

  11. W. Wang, S. Kunwar, J.Y. Huang, D.Z. Wang, Z.F. Ren, Nanotechnology 16, (2005).

  12. D. Zhou, E.V. Anoshkina, L. Chow, G. Chai, Carbon 44 (2006).

  13. M. Ishigami, S. Aloni, A. Zettl, in Scanning Tunneling Microscopy/Spectroscopy and Related Techniques; 12th International Conf., P.M. Koenraad, M. Kemerink, Eds. (Eindhoven, The Netherlands, 2003).

    Google Scholar 

  14. M.W. Smith, K.C. Jordan, C. Park, J.-W. Kim, P.T. Lillehei, R. Crooks, J.S. Harrison, Nanotechnology 20, 505604 (2009).

    Google Scholar 

  15. Y. Gogotsi, J.A. Libera, M. Yoshimura, MRS Bull. 15 (12), 2591 (2000).

    Google Scholar 

  16. M.J. Schulz, V.N. Shanov, Y. Yeoheung, Nanomedicine Design of Particles, Sensors, Motors, Implants, Robots, and Devices (Artech House Publishers, Norwood, MA, 2009).

    Google Scholar 

  17. C.N.R. Rao, A. Govindaraj, Adv. Mater. 21, 42 (2009).

    Google Scholar 

  18. Y. Bando, J.Q. Hu, L.W. Yin, C.H. Ye, Microsc Microanal. 13 (Suppl. 2) (2007).

  19. Inorganic Nanostructured Materials Group, Tsukuba, Ibaraki, Japan: www.nims.go.jp/synthesis/topics-e.html.

  20. H. Pan, J. Li, Y.P. Feng, Nanoscale Res. Lett. 4, 153 (2009).

    Google Scholar 

  21. L.M. Ericson, H. Fan, H. Peng, V.A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A. Nicholas, G. Parra-Vasquez, M.J. Kim, S. Ramesh, R.K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W. Adams, W.E. Billups, M. Pasquali, W.-F. Hwang, R.H. Hauge, J.E. Fischer, R.E. Smalley, Science. 305, 5689 (2004).

    Google Scholar 

  22. Y. Li, I. Kinloch, A. Windle, Science 304, 5668 (2004).

    Google Scholar 

  23. X. Zhang, K. Jiang, C. Feng, P. Liu, L. Zhang, J. Kong, T. Zhang, Q. Li, S. Fan, Adv. Mater. 18 (2006).

  24. M. Zhang, K.R. Atkinson, R.H. Baughman, Science 306, 5700 (2004).

    Google Scholar 

  25. K.R. Atkinson, S.C. Hawkins, C. Huynh, C. Skourtis, J. Dai, M. Zhang, S.L. Fang, A.A. Zakhidov, S.B. Lee, A.E. Aliev, C.D. Williams, R.H. Baughman, Phys. B 394, 2 (2007).

    Google Scholar 

  26. J.L. Abot, Y. Song, M. Sri Vatsavaya, S. Medikonda, Z. Kier, C. Jayasinghe, N. Rooy, V.N. Shanov, M.J. Schulz, Compos. Sci. Technol. 70 (7), 1113 (2010).

    Google Scholar 

  27. W. Zhang, V. Sakalkar, N. Koratkar, Appl. Phys. Lett. 91, 133102 (2007).

    Google Scholar 

  28. M.J. Schulz, S. Sundaramurthy, L. Mullapudi, J. Yin, V. Shanov, D. Hurd, S. Yarmolenko, S. Fialkova, W. Wagner, Application of Carbon Nanotube Fiber for In-Body Biomdedical Devices (University of Cincinnati, OH, 2010).

    Google Scholar 

  29. L. Qu, L. Dai, M. Stone, Z. Xia, Z.L. Wang, Science 322 (2008).

  30. R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D. DeRossi, A.G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, Science 284 (1999).

  31. L. Xiao, Z. Chen, C. Feng, L. Liu, Z.-Q. Bai, Y. Wang, L. Qian, Y. Zhang, Q. Li, K. Jiang, S. Fan, Nano Lett. 8, 12 (2008).

    Google Scholar 

  32. G. Li, S. Chakrabarti, M. Schulz, V. Shanov, J. Mater. Res. 24, 9 (2009).

    Google Scholar 

  33. National Science Foundation, Revolutionizing Metallic Biomaterials: http://erc.ncat.edu.

  34. T. Mirfakhrai, J. Oh, M. Kozlov, E.C.W. Fok, M. Zhang, S. Fang, R.H. Baughman, J.D.W. Madden, Smart Mater. Struct. 16 (2007).

  35. A.E. Aliev, J. Oh, M.E. Kozlov, A.A. Kuznetsov, S. Fang, A.F. Fonseca, R. Ovalle, M.D. Lima, M.H. Haque, Y.N. Gartstein, M. Zhang, A.A. Zakhidov, R.H. Baughman, Science 323, 5921 (2009).

    Google Scholar 

  36. S. Lu, S. Ahir, V. Velasco, B. King, P. Xu, E.M. Terentjev, B. Panchapakesan, J. Micro-Nano Mechatron 5, 29 (2009).

    Google Scholar 

  37. L. Weifeng, S. Sundaramurthy, V. Shanov, M. Schulz, Carbon Nanotube Thread for Distributed Sensing (University of Cincinnati, OH, 2010).

    Google Scholar 

  38. J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, A. Cao, D. Wu, Nano Lett. 7, 8 (2007).

    Google Scholar 

  39. M.S. Dresselhaus, G. Chen, Z.F. Ren, K. McEnaney, G. Dresselhaus, J.P. Fleurial, Mater. Res. Soc. Symp. Proc. 1166 (2009).

  40. D.S. Lashmore, J. Mann, B. White, M. White, D. Degtiarov, Nanostructured Material-Based Thermoelectric Generators, U.S. Patent: www.faqs.org/patents/app/20090044848#ixzz0b0RWELRa.

  41. L. Popa-Simil, Pseudo-Capacitor Structure for Direct Nuclear Energy Conversion, MRS Symposium, 1100-JJ04-14 (2008).

  42. J.M. Macak, H. Tsuchiya, A. Ghikov, K. Yasada, R. Hahn, S. Bauer, P. Schmuki, Curr. Opin. Solid State Mater. Sci. 11 (2007).

  43. P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008).

    Google Scholar 

  44. S.A. Morin, M.J. Bierman, J. Tong, S. Jin, Science 328, 476 (2010).

    Google Scholar 

  45. R.A. Freitas, Nanomedicine Volume I: Basic Capabilities (Landes Bioscience, TX, 1999).

    Google Scholar 

  46. R.A. Freitas, Nanomedicine Volume IIA: Biocompatibility (Landes Bioscience, TX, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaminda Jayasinghe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayasinghe, C., Li, W., Song, Y. et al. Nanotube responsive materials. MRS Bulletin 35, 682–692 (2010). https://doi.org/10.1557/mrs2010.680

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.680

Navigation