Skip to main content
Log in

Physics of Oxides for Future Devices

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Ferroelectric oxides underwent a renaissance in the 1980s and 1990s, driven by the success in commercializing thin-film ferroelectric random-access memory devices (FRAMs) for applications such as the SONY PlayStation 2 memory board. Materials scientists gravitated into this new field from magnetic oxides and from high-Tc superconductivity. But as the FRAM prospects wane and neither dynamic random-access memory devices nor FLASH memory has been replaced, we now require new directions for materials research on oxides. In this article, I outline briefly four new directions for ferroelectric oxide research: something old—ferroelectrically induced ferromagnetism and multiferroic switching; something new—THz emission from oxide ferroelectrics; something borrowed—Heisenberg-like switching of domains in nanoferroelectrics; and something blue—ZnO light-emitting devices. Magnetoelectricity—the linear coupling of polarization and magnetization—was theoretically predicted by Igor Dzyaloshinskii in 1957 and measured experimentally by Astrov two years later. It did not produce commercial devices. Although a flurry of new work occurred in the 1970s, emphasizing boracites—mostly by Hans Schmid in Geneva, no materials were found that exhibited large effects at room temperature. In the past decade, the search has been renewed, emphasizing rare earth systems such as Tb manganites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.L. Fox, J.F. Scott, J. Phys. C: Solid State Phys. 10, L329 (1977).

    Google Scholar 

  2. E.L. Venturini, F.R. Morgenthaler, AIP Conf. Proc. 24, C.D. Graham Jr., G.H. Lander, J.J. Rhyne, Eds. (AIP, New York, 1976) p. 168.

  3. D.L. Fox, D.R. Tilley, J.F. Scott, H.J. Guggenheim, Phys. Rev. B 21, 2926 (1980).

    Google Scholar 

  4. A.B. Harris, M. Kenzelmann M. Aharony A.O. Entin-Wohlman, Phys. Rev. B 78, 014407 (2008).

    Google Scholar 

  5. J.M. Perez-Mato, ESME Conference, Girona, Spain, 3 September 2008, in press.

  6. C. Ederer, N.A. Spaldin, Phys. Rev. B 74, 020401 (2006).

    Google Scholar 

  7. R. Blinc, G. Tavčar, B. Žemva, D. Hanžel, P. Cevc, C. Filipič, A. Levstik, Z. Jagličić, Z. Trontelj, N. Dalal, V. Ramachandran, S. Nellutla, J.F. Scott, J. Appl. Phys. 103, 074114 (2008).

    Google Scholar 

  8. V. Ryzhii, J. Phys. Condens. Matter 20, 380301 (2008).

    Google Scholar 

  9. J.F. Scott, Ferroelectric Memories (Springer, Heidelberg, 2000), p. 92.

  10. F.D. Morrison, L. Ramsay, J.F. Scott, J. Phys. Condens. Matter 15, L527 (2003).

    Google Scholar 

  11. H.J. Fan, S. Kawasaki, J.M. Gregg, A. Langner, T. Leedham, J.F. Scott, Mater. Res. Soc. Proc. 1071, F01 (2008).

    Google Scholar 

  12. M. Miyake, J.F. Scott, X.J. Lou, F.D. Morrison, T. Nonaka, S.T. Motoyama, O. Tsuji, J. Appl. Phys. 104, 064112 (2008).

    Google Scholar 

  13. K. Takahashi, N. Kida, M. Tonouchi, Phys. Rev. Lett. 96, 11740 (2006).

    Google Scholar 

  14. M. Tonouchi, Nat. Photonics 1, 97 (2007).

    Google Scholar 

  15. D.S. Rana, I. Kawayama, H. Murakami, M. Tonouchi, Bull. Am. Phys. Soc. 53 (2008).

  16. J.F. Scott, H.J. Fan, S. Kawasaki, J. Banys, M. Ivanov, J. Macutkevic, R. Blinc, V. V. Laguta, P. Cevc, J.S. Liu, A. Kholkin, Nano Lett. 8, 4404 (2008).

    Google Scholar 

  17. H.J. Fan, J.F. Scott, British Patent Application 0817519.2 (2007).

  18. I. Naumov, H. Fu, Phys. Rev. Lett. 98, 077603 (2007).

    Google Scholar 

  19. F. Kagawa, M. Mochizuki, Y. Onose, Phys. Rev. Lett. 102, 057604 (2009).

    Google Scholar 

  20. Z.Q. Wu, N. Huang, Z. Liu, J. Wu, W. Duan, B.L. Gu, J. Appl. Phys. 101, 014112 (2007).

    Google Scholar 

  21. P. Aguado-Puente, J. Junquera, Phys. Rev. Lett. 100, 177601 (2008).

    Google Scholar 

  22. L. Lahoche, I. Luk’yanchuk, G. Pascoli, Integr. Ferroelectr. 99, 60 (2008).

    Google Scholar 

  23. R.J. Harrison, R.E. Dunin-Borkowski, A. Putnis, Proc. Nat. Acad. Sci. U.S.A. 99, 16556 (2002).

    Google Scholar 

  24. A. Gruverman, D. Wu, H.J. Fan, I. Vrejou, M. Alexe, R.J. Harrison, J.F. Scott J. Phys. Condens. Matter 20, 342201 (2008).

  25. M.R. Scheinfein, J. Unguris, J.L. Blue, K.J. Coakley, D.T. Pierce, R.J. Celotta, P.J. Ryan, Phys. Rev. B 43, 3395 (1991).

    Google Scholar 

  26. J.F. Scott, T.C. Damen, W.T. Silfvast, R.C.C. Leite, L.E. Cheesman, Opt. Commun. 1, 397 (1970).

    Google Scholar 

  27. J.F. Scott, T.C. Damen, R.C.C. Leite, Phys. Rev. 188, 1285 (1969).

    Google Scholar 

  28. J.F. Scott, Phys. Rev. B 2, 1209 (1970).

    Google Scholar 

  29. R.M. Martin, Phys. Rev. B 4, 3676 (1971).

    Google Scholar 

  30. J. Shah, R.C.C. Leite, J.F. Scott, Solid State Commun. 8, 1089 (1970).

    Google Scholar 

  31. M. Okuyama, Y. Ishibashi, Ferroelectric Thin Films (Springer, Berlin, 2005).

    Google Scholar 

  32. H.J. Fan, P. Werner, M. Zacharias, Small 2, 700 (2006).

    Google Scholar 

  33. R. Hauschild, H. Lange, H. Priller, C. Klingshirn, R. Kling, A. Waag, H.J. Fan, M. Zacharias, H. Kalt, Phys. Status Solidi 243, 853 (2006).

    Google Scholar 

  34. H.J. Fan, R. Scholz, M. Zacharias, Appl. Phys. Lett. 86, 023113 (2005).

    Google Scholar 

  35. E.T. Keve, S.C. Abrahams, J.L. Bernstein, J. Chem. Phys. 53, 3279 (1970).

    Google Scholar 

  36. D.W. Bechtle, J.F. Scott, D.J. Lockwood, Phys. Rev. B 18, 6213 (1978).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, J.F. Physics of Oxides for Future Devices. MRS Bulletin 35, 227–230 (2010). https://doi.org/10.1557/mrs2010.656

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.656

Navigation