Skip to main content
Log in

Biorenewable Multiphase Polymers

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Hybrid macromolecules composed of two or more covalently connected segments have the ability to self-assemble into nanostructured materials. These fascinating materials are used in applications ranging from footwear to bitumen modification to microelectronics. The number of technologies that utilize or could benefit from multiphase polymers is expanding at a rapid rate. This growth is due to the development of simple scalable synthetic technologies, a deeper understanding of their structure-property relationships, and their effectiveness as low-level additives. As industrial uses of self-assembled polymers become more prevalent, there will be a heightened focus on alternative preparative approaches that do not rely on petroleum feedstocks. Therefore the development of biorenewable multiphase polymers is an important research endeavor. In this article, we will explore the synthesis, self-assembly, and properties of renewable block and graft copolymers that contain aliphatic polyesters, as well as bio-sourced segmented polyurethanes. These two classes of multiphase polymers are the most promising and practical candidates for implementation in the next generation of sustainable materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Flieger, M. Kantorova, A. Prell, T. Rezanka, J. Votruba, Folia Microbiologica 48, 27 (2003).

    Google Scholar 

  2. K. Sudesh, T. Iwata, CLEAN—Soil, Air, Water 36, 433 (2008).

    Google Scholar 

  3. A. Gandini, Macromolecules 41, 9491 (2008).

    Google Scholar 

  4. R. Bhardwaj, A.K. Mohanty, J. Biobased Mater. Bioenergy 1, 191 (2007).

    Google Scholar 

  5. G. Holden, N.R. Legge, R.P. Quirk, H.E. Schroeder, Thermoplastic Elastomers (Hanser/Gardner, Ohio, 1993).

    Google Scholar 

  6. S.Y. Hobbs, Polym. Eng. Sci. 26, 74 (1986).

    Google Scholar 

  7. N. Hadjichristidis, S. Pispas, G. Floudas, Block Copolymers (Wiley, New Jersey, 2003).

    Google Scholar 

  8. T.P. Lodge, Macromol. Chem. Phys. 204, 265 (2003).

    Google Scholar 

  9. B.J. O’Keefe, M.A. Hillmyer, W.B. Tolman, Dalton Trans. 2215 (2001).

  10. U.S. DOE Biomass program, “Top Value Added Chemicals from Biomass, Volume 1: Results of Screening for Potential Candidates from Sugars and Synthesis Gas,” (Report # 35523, 2004); http://www1.eere.energy.gov/ biomass/pdfs/35523.pdf.

  11. M.A.R. Meier, J.O. Metzger, U.S. Schubert, Chem. Soc. Rev. 36, 1788 (2007).

    Google Scholar 

  12. P. Gallezot, Green Chem. 9, 295 (2007).

    Google Scholar 

  13. Y. Ikada, K. Jamshidi, H. Tsuji, S.H. Hyon, Macromolecules 20, 904 (1987).

    Google Scholar 

  14. L.B. Li, Z.Y. Zhong, W.H. De Jeu, P.J. Dijkstra, J. Feijen, Macromolecules 37, 8641 (2004).

    Google Scholar 

  15. A.C. Albertsson, I.K. Varma, Biomacromolecules 4, 1466 (2003).

    Google Scholar 

  16. C.M. Dong, K.Y. Qiu, Z.W. Gu, X.D. Feng, J. Polym. Sci. Pol. Chem. 40, 409 (2002).

    Google Scholar 

  17. R. Kumar, W. Gao, R.A. Gross, Macromolecules 35, 6835 (2002).

    Google Scholar 

  18. R. Slivniak, A.J. Domb, Macromolecules 38, 5545 (2005).

    Google Scholar 

  19. R. Slivniak, A.J. Domb, Biomacromolecules 6, 1679 (2005).

    Google Scholar 

  20. R. Slivniak, A. Ezra, A.J. Domb, Pharm. Res. 23, 1306 (2006).

    Google Scholar 

  21. D. Zhang, M.A. Hillmyer, W.B. Tolman, Biomacromolecules 6, 2091 (2005).

    Google Scholar 

  22. C.L. Wanamaker, L.E. O’Leary, N.A. Lynd, M.A. Hillmyer, W.B. Tolman, Biomacromolecules 8, 3634 (2007).

    Google Scholar 

  23. C.L. Wanamaker, W.B. Tolman, M.A. Hillmyer, Biomacromolecules 10, 443 (2009).

    Google Scholar 

  24. C.L. Wanamaker, M.J. Bluemle, L.M. Pitet, L.E. O’Leary, W.B. Tolman, M.A. Hillmyer, Biomacromolecules 10, 2904 (2009).

    Google Scholar 

  25. E.M. Frick, M.A. Hillmyer, Macromol. Rapid Commun. 21, 1317 (2000).

    Google Scholar 

  26. E.M. Frick, A.S. Zalusky, M.A. Hillmyer, Biomacromolecules 4, 216 (2003).

    Google Scholar 

  27. C.M. Byrne, S.D. Allen, E.B. Lobkovsky, G.W. Coates, J. Am. Chem. Soc. 126 (37), 11404 (2004).

    Google Scholar 

  28. J. Mosnacek, K. Matyjaszewski, Macromolecules 41, 5509 (2008).

    Google Scholar 

  29. L.L. Madison, G.W. Huisman, Microbiol. Mol. Biol. Rev. 63, 21 (1999).

    Google Scholar 

  30. A.S. Kelley, N.V. Mantzaris, P. Daoutidis, F. Srienc, Nano Lett. 1, 481 (2001).

    Google Scholar 

  31. E.N. Pederson, C.W.J. McChalicher, F. Srienc, Biomacromolecules 7, 1904 (2006).

    Google Scholar 

  32. C.W.J. McChalicher, F. Srienc, J. Biotechnol. 132, 296 (2007).

    Google Scholar 

  33. K.M. Schreck, M.A. Hillmyer, Journal of Biotechnology 132, 287 (2007).

    Google Scholar 

  34. D. Haynes, N.K. Abayasinghe, G.M. Harrison, K.J. Burg, D.W. Smith, Biomacromolecules 8, 1131 (2007).

    Google Scholar 

  35. S. Hiki, M. Miyamoto, Y. Kimura, Polymer 41, 7369 (2000).

    Google Scholar 

  36. S. Nguyen, Can. J. Chem. 86, 570 (2008).

    Google Scholar 

  37. S. Dumitriu, Polysaccharides: Structural Diversity and Functional Versatility (Marcel Dekker, New York, 2005).

    Google Scholar 

  38. Y. Teramoto, Y. Nishio, Polymer 44, 2701 (2003).

    Google Scholar 

  39. E. Schwach, J.L. Six, L. Averous, J. Polym. Environ. 16, 286 (2008).

    Google Scholar 

  40. Y. Ohya, S. Maruhashi, T. Ouchi, Macromol. Chem. Phys. 199, 2017 (1998).

    Google Scholar 

  41. C.H. Yan, J.M. Zhang, Y.X. Lv, J. Yu, J. Wu, J. Zhang, J.S. He, Biomacromolecules 10, 2013 (2009).

    Google Scholar 

  42. H.Q. Dong, Q. Xu, Y.Y. Li, S.B. Mo, S.J. Cai, L.J. Liu, Colloids Surf., B 66, 26 (2008).

    Google Scholar 

  43. K. Nagahama, Y. Mori, Y. Ohya, T. Ouchi, Biomacromolecules 8, 2135 (2007).

    Google Scholar 

  44. H. Feng, C.M. Dong, Biomacromolecules 7, 3069 (2006).

    Google Scholar 

  45. G. Li, Y.L. Zhuang, Q. Mu, M.Z. Wang, Y.E. Fang, Carbohydr. Polym. 72, 60 (2008).

    Google Scholar 

  46. T. Ouchi, T. Kontani, Y. Ohya, Polymer 44, 3927 (2003).

    Google Scholar 

  47. Y. Liu, F. Tian, K.A. Hu, Carbohydr. Res. 339, 845 (2004).

    Google Scholar 

  48. F.L. Yao, W. Chen, H. Wang, H. Liu, K. Yao et al., Polymer 44, 6435 (2003).

    Google Scholar 

  49. C. Nouvel, C. Frochot, V. Sadtler, P. Dubois, E. Dellacherie, J.L. Six, Macromolecules 37, 4981 (2004).

    Google Scholar 

  50. X. Qu, A. Wirsen, A.C. Albertsson, J. Appl. Polym. Sci. 74, 3186 (1999).

    Google Scholar 

  51. S.J. De Jong, S.C. De Smedt, M.W.C. Wahls, J. Demeester, J.J. Kettenes-Van Den Bosch, W.E. Hennink, Macromolecules 33, 3680 (2000).

    Google Scholar 

  52. Y. Wu, M.J. Li, H.X. Gao, J. Polym. Res. 16, 11 (2009).

    Google Scholar 

  53. S.R. Van Tomme, G. Storm, W.E. Hennink, Int. J. Pharm. 355, 1 (2008).

    Google Scholar 

  54. I. Yilgor, E. Yilgor, Polym. Rev. 47, 487 (2007).

    Google Scholar 

  55. P. Krol, Prog. Mater. Sci. 52, 915 (2007).

    Google Scholar 

  56. Z.S. Petrović, Polym. Rev. 48, 109 (2008).

    Google Scholar 

  57. H. Yeganeh, P. Hojati-Talemi, Polym. Degrad. Stab. 92, 480 (2007).

    Google Scholar 

  58. Z.S. Petrović, M.J. Cevallos, I. Javni, D.W. Schaefer, R. Justice, J. Polym. Sci., Part B: Polym. Phys. 43, 3178 (2005).

    Google Scholar 

  59. Z.S. Petrović, A. Guo, W. Zhang, J. Polym. Sci., Part A: Polym. Chem. 38, 4062 (2000).

    Google Scholar 

  60. Z.S. Petrović, W. Zhang, I. Javni, Biomacromolecules 6, 713 (2005).

    Google Scholar 

  61. Z.S. Petrović, W. Zhang, A. Zlatanić, C.C. Lava, M. Ilavskyý, J. Polym. Environ. 10, 5 (2002).

    Google Scholar 

  62. C.T. Hou, W. Brown, D.P. Labeda, T.P. Abbott, D. Weisleder, J. Ind. Microbiol. Biotechnol. 19, 34 (1997).

    Google Scholar 

  63. G. Lligadas, J.C. Ronda, M. Galià, U. Biermann, J.O. Metzger, J. Polym. Sci., Part A: Polym. Chem 44, 634 (2006).

    Google Scholar 

  64. C.S. Wang, L.T. Yang, B.L. Ni, L.Y. Wang, J. Appl. Polym. Sci. 112 , 1122 (2009).

  65. M. Ionescu, Z.S. Petrović, “Ethyoxylated Soybean Polyols for Polyurethanes,” in International Degradable Plastics Symposium: Status of Biobased and Synthetic Polymer Technology (BioEnvironmental Polymer Society, Chicago, 2006).

  66. A. Zlatanić, C. Lava, W. Zhang, Z.S. Petrović, J. Polym. Sci., Part B: Polym. Phys. 42, 809 (2004).

    Google Scholar 

  67. I.O. Bakare, C. Pavithran, F.E. Okieimen, C.K.S. Pillai, J. Appl. Polym. Sci. 109, 3292 (2008).

    Google Scholar 

  68. M.J. Donnelly, J.L. Stanford, R.H. Still, Carbohydr. Polym. 14, 221 (1991).

    Google Scholar 

  69. M.J. Donnelly, Polym. Int. 37, 297 (1995).

    Google Scholar 

  70. J.L. Stanford, R.H. Still, J.L. Cawse, M.J. Donnelly, Adhesives from Renewable Resources (American Chemical Society, Washington, DC, 1989).

    Google Scholar 

  71. J.L. Cawse, J.L. Stanford, R.H. Still, Makromol. Chem. 185, 709 (1984).

    Google Scholar 

  72. S. Boufi, A. Gandini, M.N. Belgacem, Polymer 36, 1689 (1995).

    Google Scholar 

  73. M.E. Rogers, T.E. Long, Synthetic Methods in Step-Growth Polymers (Wiley, New Jersey, 2003).

    Google Scholar 

  74. T.W. Pechar, S. Sohn, G.L. Wilkes, S. Ghosh, C.E. Frazier, A. Fornof, T.E. Long, J. Appl. Polym. Sci. 101, 1432 (2006).

    Google Scholar 

  75. Y. Xu, Z. Petrović, S. Das, G.L. Wilkes, Polymer 49, 4248 (2008).

    Google Scholar 

  76. L. Zhang, H.K. Jeon, J. Malsam, R. Herrington, C.W. Macosko, Polymer 48, 6656 (2007).

    Google Scholar 

  77. J. Argyropoulos, B. Erdem, D. Bhattacharjee, P. Foley, K. Nanjundiah, JCT Coatings Tech 6, 44 (2009).

    Google Scholar 

  78. H.-Q. Xie, J.-S. Guo, Eur. Polym. J. 38, 2271 (2002).

    Google Scholar 

  79. C.D. Eisenbach, A. Ribbe, Macromol. Rapid Comm. 15, 395 (1994).

    Google Scholar 

  80. S. Das, M. Dave, G.L. Wilkes, J. Appl. Polym. Sci. 112, 299 (2009).

    Google Scholar 

  81. J.W.C. Van Bogart, A. Lilaomitkul, S.L. Cooper, Multiphase Polymers, S.L. Cooper, G.M. Estes, Eds. (American Chemical Society, Washington, DC, 1979).

  82. J.W.C. Van Bogart, P.E. Gibson, S.L. Cooper, J. Polym. Sci., Polym. Phys. Ed. 21, 65 (1983).

    Google Scholar 

  83. S. Abhouzar, G.L. Wilkes, Z. Ophir, Polymer 23, 1077 (1982).

    Google Scholar 

  84. A. Gandini, M.N. Belgacem, Prog. Polym. Sci. 22, 1203 (1997).

    Google Scholar 

  85. J.L. Cawse, J.L. Stanford, R.H. Still, Makromol. Chem. 185, 697 (1984).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertson, M.L., Hillmyer, M.A., Mortamet, AC. et al. Biorenewable Multiphase Polymers. MRS Bulletin 35, 194–200 (2010). https://doi.org/10.1557/mrs2010.651

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.651

Navigation