Skip to main content
Log in

Bioinspired Hierarchical Crystals

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

In the sophisticated architectures of various biominerals, a multilevel hierarchy of lengths from nanometers to millimeters is commonly observed. In this article, superstructures composed of inorganic crystals associated with organic molecules from carbonate-based biominerals were identified and categorized as mesocrystals, which are composed of crystallographically oriented crystals. For the production of hierarchically structured mesocrystals, two strategies using self-organized growth with organic agents in aqueous solution systems were proposed. Arranged structures of micrometric and nanometric units were induced with an insoluble gel matrix and soluble adsorbable organic molecules, respectively. Consequently, bioinspired hierarchical crystals were successfully achieved by combining the matrix and soluble species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mann, Nature 332, 119 (1988).

    Google Scholar 

  2. S. Weiner, L. Addadi, J. Mater. Chem. 7, 689 (1997).

    Google Scholar 

  3. S.I. Stupp, P.V. Braun, Science 277, 1242 (1997).

    Google Scholar 

  4. T. Kato, A. Sugawara, N. Hosoda, Adv. Mater. 14, 869 (2002).

    Google Scholar 

  5. F.C. Meldrum, Int. Mater. Rev. 48, 187 (2003).

    Google Scholar 

  6. S.-H. Yu, H. Cölfen, J. Mater. Chem. 14, 2124 (2004).

    Google Scholar 

  7. A.-W. Xu, Y. Ma, H. Cölfen, J. Mater. Chem. 17, 415 (2007).

    Google Scholar 

  8. H. Imai, Y. Oaki, A. Kotachi, Bull. Chem. Soc. Jpn. 79, 1834 (2006).

    Google Scholar 

  9. S.-H. Yu, Top. Curr. Chem. 271, 79 (2007).

    Google Scholar 

  10. N.A.J.M. Sommerdijk, G. de With, Chem. Rev. 108, 4499 (2008).

    Google Scholar 

  11. F.C. Meldrum, H. Cölfen, Chem. Rev. 108, 4332 (2008).

    Google Scholar 

  12. Y. Oaki, H. Imai, Angew. Chem. Int. Ed. 44, 6571 (2005).

    Google Scholar 

  13. Y. Oaki, H. Imai, Small 2, 66 (2006).

    Google Scholar 

  14. Y. Oaki, A. Kotachi, T. Miura, H. Imai, Adv. Funct. Mater. 16, 1633 (2006).

    Google Scholar 

  15. N. Watabe, J. Ultrastruct. Res. 27, 360 (1965).

    Google Scholar 

  16. P. Calbert, S. Mann, J. Mater. Sci. 3, 3801 (1988).

    Google Scholar 

  17. M. Sarikaya, Microsc. Res. Tech. 27, 360 (1994).

    Google Scholar 

  18. K. Takahashi, H. Yamamoto, A. Onoda, M. Doi, T. Inaba, M. Chiba, A. Kobayashi, T. Taguchi, T. Okamura, N. Ueyama, Chem. Commun. 996 (2004).

  19. X. Li, W.C. Chang, Y.J. Chao, R. Wang, M. Chang, Nano Lett. 4, 613 (2004).

    Google Scholar 

  20. B.A. Gotliv, L. Addadi, S. Weiner, Chembiochem 4, 522 (2003).

    Google Scholar 

  21. E. Bäuerlein, Angew. Chem. Int. Ed. 42, 614 (2003).

    Google Scholar 

  22. T.E. Schäffer, C. Ionescu-Zanetti, R. Proksch, M. Fritz, D.A. Walters, N. Almqvist, C.M. Zaremba, A.M. Belcher, B.L. Smith, G.D. Stucky, D.E. Morse, P.K. Hansma, Chem. Mater. 9, 1731 (1997).

    Google Scholar 

  23. M.S. Fernandez, K. Passalacqua, J.I. Arias, J.L. Arias, J. Struct. Biol. 148, 1 (2004).

    Google Scholar 

  24. H. Silyn-Roberts, R.M. Sharp, Proc. R. Soc. Lond. B 277, 303 (1986).

    Google Scholar 

  25. Q.L. Feng, X. Zhu, H.D. Li, T.N. Kim, J. Cryst. Growth 233, 548 (2001).

    Google Scholar 

  26. H. Cölfen, Mann, S. Angew. Chem. Int. Ed. 42, 2350 (2003).

  27. H. Cölfen, M. Antonietti, Angew. Chem. Int. Ed. 44, 5576 (2005).

    Google Scholar 

  28. M. Niederberger, H. Cölfen, Phys. Chem. Chem. Phys. 8, 3271 (2006).

    Google Scholar 

  29. L. Zhou, P. O’Brien, Small 4, 1566 (2008).

    Google Scholar 

  30. T.X. Wang, A. Verch, H.G. Börner, H. Cölfen, M. Antonietti, J. Ceram. Soc. Jpn. 117, 221 (2009).

    Google Scholar 

  31. T.X. Wang, H. Cölfen, M. Antonietti, J. Am. Chem. Soc. 127, 3246 (2005).

    Google Scholar 

  32. A.N. Kulak, P. Iddon, Y. Li, S.P. Armes, H. Cölfen, O. Paris, R.M. Wilson, F.C. Meldrum, J. Am. Chem. Soc. 129, 3729 (2007).

    Google Scholar 

  33. Y. Oaki, H. Imai, Cryst. Growth Des. 3, 711 (2003).

    Google Scholar 

  34. Y. Saito, T. Ueta, Phys. Rev. A. 40, 3408 (1989).

    Google Scholar 

  35. J. Suda, T. Nakayama, A. Nakahara, M. Matsushita, J. Phys. Soc. Jpn. 95, 771 (1996).

    Google Scholar 

  36. H. Imai, Y. Oaki, Angew. Chem. Int. Ed. 43, 1363 (2004).

    Google Scholar 

  37. Y. Oaki, H. Imai, J. Am. Chem. Soc. 126, 9271 (2004).

    Google Scholar 

  38. T. Kato, T. Suzuki, T. Mamiya, T. Irie, M. Komiyama, Supramol. Sci. 5, 411 (1998).

    Google Scholar 

  39. T. Kato, T. Suzuki, T. Irie, Chem. Lett. 186 (2000).

  40. A. Kotachi, T. Miura, H. Imai, Chem. Mater. 16, 3191 (2004).

    Google Scholar 

  41. T. Kato, Adv. Mater. 12, 1543 (2000).

    Google Scholar 

  42. Y. Oaki, H. Imai, Adv. Funct. Mater. 15, 1407 (2005).

    Google Scholar 

  43. Y. Oaki, S. Hayashi, H. Imai, Chem. Commun. 2841 (2007).

  44. O. Grassmann, P. Lömann, Chem. Eur. J. 9, 1310 (2003).

    Google Scholar 

  45. H. Li, L.A. Estroff, CrystEngComm 9, 1153 (2007).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imai, H., Oaki, Y. Bioinspired Hierarchical Crystals. MRS Bulletin 35, 138–144 (2010). https://doi.org/10.1557/mrs2010.634

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.634

Navigation