Skip to main content
Log in

Macromolecular Templating for the Formation of Inorganic-Organic Hybrid Structures

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Biominerals such as the nacre of shells, spicules of sea urchins, teeth, and bones are inorganic-organic hybrids that have highly controlled hierarchical and complex structures. These structures are formed in mild conditions, and the processes are controlled by macromolecular templates of proteins, peptides, and polysaccharides. Materials scientists can obtain ideas from the structures, properties, and formation processes of biominerals for use in creating synthetic, biomimetic materials. This article highlights bioinspired synthetic approaches to the development of organic/CaCO3 hybrids using macromolecular templates. These hybrids have oriented, patterned, and 3D complex structures, as well as thin films with smooth surfaces. The structures are formed by templating synthetic and semisynthetic macromolecules. These materials have great potential for new functional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mann, Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry, R.G. Compton, S.G. Davies, J. Evans, Eds. (Oxford University Press, Oxford, 2001).

    Google Scholar 

  2. E. Bäuerlein, P. Behrens, M. Epple, Eds. Handbook of Biomineralization (Wiley-VCH, Weinheim, 2007).

    Google Scholar 

  3. L. Addadi, S. Weiner, Nature 389, 912 (1997).

    Google Scholar 

  4. F. Nudelman, E. Shimoni, E. Klein, M. Rousseau, X. Bourrat, E. Lopez, L. Addadi, S. Weiner, J. Struct. Biol. 162, 290 (2008).

    Google Scholar 

  5. L. Addadi, D. Joester, F. Nudelman, S. Weiner, Chem. Eur. J. 12, 980 (2006).

    Google Scholar 

  6. N. Watabe, J. Ultrastruct. Res. 12, 351 (1965).

    Google Scholar 

  7. M. Suzuki, K. Saruwatari, T. Kogure, Y. Yamamoto, T. Nishimura, T. Kato, H. Nagasawa, Science 325, 1388 (2009).

    Google Scholar 

  8. F.C. Meldrum, H. Cölfen, Chem. Rev. 108, 4332 (2008).

    Google Scholar 

  9. N.A.J.M. Sommerdijk, G. de With, Chem. Rev. 108, 4499 (2008).

    Google Scholar 

  10. L.C. Palmer, C.J. Newcomb, S.R. Kaltz, E.D. Spoerke, S.I. Stupp, Chem. Rev. 108, 4754 (2008).

    Google Scholar 

  11. T. Kato, A. Sugawara, N. Hosoda, Adv. Mater. 14, 869 (2002).

    Google Scholar 

  12. F.C. Meldrum, Int. Mater. Rev. 48, 187 (2003).

    Google Scholar 

  13. H. Imai, Y. Oaki, A. Kotachi, Bull. Chem. Soc. Jpn. 79, 1834 (2006).

    Google Scholar 

  14. C. Ohtsuki, H. Kushitani, T. Kokubo, S. Kotani, T. Yamamuro, J. Biomed. Mater. Res. 25, 1363 (1991).

    Google Scholar 

  15. K. Naka, Y. Chujo, Chem. Mater. 13, 3245 (2001).

    Google Scholar 

  16. T. Kato, Adv. Mater. 12, 1543 (2000).

    Google Scholar 

  17. N. Hosoda, T. Kato, Chem. Mater. 13, 688 (2001).

    Google Scholar 

  18. T. Kato, T. Suzuki, T. Amamiya, T. Irie, M. Komiyama, H. Yui, Supramol. Sci. 5, 411 (1998).

    Google Scholar 

  19. S. Zhang, K.E. Gonsalves, Langmuir 14, 6761 (1998).

    Google Scholar 

  20. Y. Oaki, H. Imai, Cryst. Growth Des. 3, 711 (2003).

    Google Scholar 

  21. H.Y. Li, L.A. Estroff, Adv. Mater. 21, 470 (2009).

    Google Scholar 

  22. D. Ogomi, T. Serizawa, M. Akashi, J. Biomed. Mater. Res. 67A, 1360 (2003).

    Google Scholar 

  23. S. Tugulu, M. Harms, M. Fricke, D. Volkmer, H.-A. Klok, Angew. Chem. Int. Ed. 45, 7458 (2006).

    Google Scholar 

  24. J. Aizenberg, A.J. Black, G.M. Whitesides, Nature 398, 495 (1999).

    Google Scholar 

  25. J. Küther, R. Seshadri, W. Knoll, W. Tremel, J. Mater. Chem. 8, 641 (1998).

    Google Scholar 

  26. S.-H. Yu, H. Cölfen, J. Hartmann, M. Antonietti, Adv. Funct. Mater. 12, 541 (2002).

    Google Scholar 

  27. L.B. Gower, Chem. Rev. 108, 4551 (2008).

    Google Scholar 

  28. W.-T. Yao, S.-H. Yu, Adv. Funct. Mater. 18, 3357 (2008).

    Google Scholar 

  29. H. Cölfen, S. Mann, Angew. Chem. Int. Ed. 42, 2350 (2003).

    Google Scholar 

  30. T. Kato, T. Suzuki, T. Irie, Chem. Lett. 186 (2000).

  31. N. Hosoda, A. Sugawara, T. Kato, Macromolecules 36, 6449 (2003).

    Google Scholar 

  32. A. Sugawara, T. Ishii, T. Kato, Angew. Chem. Int. Ed. 42, 5299 (2003).

    Google Scholar 

  33. T. Sakamoto, A. Oichi, Y. Oaki, T. Nishimura, A. Sugawara, T. Kato, Cryst. Growth Des. 9, 622 (2009).

    Google Scholar 

  34. T. Sakamoto, A. Oichi, T. Nishimura, A. Sugawara, T. Kato, Polym. J. 41, 522 (2009).

    Google Scholar 

  35. A. Sugawara, T. Nishimura, Y. Yamamoto, H. Inoue, H. Nagasawa, T. Kato, Angew. Chem. Int. Ed. 45, 2876 (2006).

    Google Scholar 

  36. T. Nishimura, T. Ito, Y. Yamamoto, M. Yoshio, T. Kato, Angew. Chem. Int. Ed. 47, 2800 (2008).

    Google Scholar 

  37. A. Sugawara, A. Oichi, H, Suzuki, Y. Shigesato, T. Kogure, T. Kato, J. Polym. Sci., Part A: Polym. Chem. 44, 5153 (2006).

    Google Scholar 

  38. A. Sugawara, T. Kato, Chem. Commun. 487 (2000).

  39. T. Sakamoto, A. Oichi, A. Sugawara, T. Kato, Chem. Lett. 35, 310 (2006).

    Google Scholar 

  40. Y. Yamamoto, T. Nishimura, A. Sugawara, H. Inoue, H. Nagasawa, T. Kato, Cryst. Growth Des. 8, 4062 (2008).

    Google Scholar 

  41. T. Kato, T. Amamiya, Chem. Lett. 199 (1999).

  42. A. Jayaraman, G. Subramanyam, S. Sindhu, P.K. Ajikumar, S. Valiyaveettil, Cryst. Growth Des. 7, 142 (2007).

    Google Scholar 

  43. J.T. Han, X. Xu, D.H. Kim, K. Cho, Chem. Mater. 17, 136 (2005).

    Google Scholar 

  44. A. Ulčinas, M.F. Butler, M. Heppenstall-Butler, S. Singleton, M.J. Miles, J. Cryst. Growth 307, 378 (2007).

    Google Scholar 

  45. D.C. Popescu, E.N.M. van Leeuwen, N.A.A. Rossi, S.J. Holder, J.A. Jansen, N.A.J.M. Sommerdijk, Angew. Chem. Int. Ed. 45, 1762 (2006).

    Google Scholar 

  46. N.A.J.M. Sommerdijk, E.N.M. van Leeuwen, M.R.J. Vos, J.A. Jansen, CrystEngComm. 9, 1209 (2007).

    Google Scholar 

  47. K. Akiyoshi, S. Deguchi, N. Moriguchi, S. Yamaguchi, J. Sunamoto, Macromolecules 26, 3062 (1993).

    Google Scholar 

  48. K. Takahashi, H. Yamamoto, A. Onoda, M. Doi, T. Inaba, M. Chiba, A. Kobayashi, T. Taguchi, T. Okamura, N. Ueyama, Chem. Commun. 996 (2004).

  49. L. Addadi, S. Raz, S. Weiner, Adv. Mater. 15, 959 (2003).

    Google Scholar 

  50. Y. Oaki, S. Kajiyama, T. Nishimura, H. Imai, T. Kato, Adv. Mater. 20, 3633 (2008).

    Google Scholar 

  51. P. Romano, H. Fabritius, D. Raabe, Acta Biomater. 3, 301 (2007).

    Google Scholar 

  52. D.F. Travis, Ann. N.Y. Acad. Sci. 109, 177 (1963).

    Google Scholar 

  53. D. Gebauer, A. Völkel, H. Cölfen, Science 322, 1819 (2008).

    Google Scholar 

  54. E.M. Pouget, P.H.H. Bomans, J.A.C.M. Goos, P.M. Frederik, G. de With, N.A.J.M. Sommerdijk, Science 323, 1455 (2009).

    Google Scholar 

  55. H. Inoue, N. Ozaki, H. Nagasawa, Biosci. Biotechnol. Biochem. 65, 1840 (2001).

    Google Scholar 

  56. H. Inoue, T. Ohira, H. Nagasawa, Peptides 28, 566 (2007).

    Google Scholar 

  57. F. Marin, G. Luquet, in Handbook of Biomineralization, E. Bäuerlein, Ed. (Wiley-VCH, Weinheim, 2007), pp. 273–290.

    Google Scholar 

  58. P.J. Collings, M. Hird, Introduction to Liquid Crystals Chemistry and Physics, (Taylor & Francis, London, 1997).

  59. H. Cölfen, M. Antonietti, Angew. Chem. Int. Ed. 44, 5576 (2005).

    Google Scholar 

  60. J.E. Lydon, Liq. Cryst. Today 13, 1 (2004).

    Google Scholar 

  61. Y. Bouligand, Tissue Cell 4, 189 (1972).

    Google Scholar 

  62. Y. Oaki, S. Kajiyama, T. Nishimura, T. Kato, J. Mater. Chem. 18, 4140 (2008).

    Google Scholar 

  63. R.L. Brutchey, D.E. Morse, Chem. Rev. 108, 4915 (2008).

    Google Scholar 

  64. D. Kisailus, Q. Truong, Y. Amemiya, J.C. Weaver, D.E. Morse, Proc. Nat. Acad. Sci. U.S.A. 103, 5652 (2006).

    Google Scholar 

  65. T. Matsunaga, T. Suzuki, M. Tanaka, A. Arakaki, Trends Biotechnol. 25, 182 (2007).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, T., Sakamoto, T. & Nishimura, T. Macromolecular Templating for the Formation of Inorganic-Organic Hybrid Structures. MRS Bulletin 35, 127–132 (2010). https://doi.org/10.1557/mrs2010.632

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.632

Navigation