Skip to main content
Log in

Materials Screening and Applications of Plasmonic Crystals

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Surface plasmon polaritons are responsible for various optical phenomena, including negative refraction, enhanced optical transmission, and nanoscale focusing. Although many materials support plasmons, the choice of metal for most applications has been based on traditional plasmonic materials, such as Ag and Au, because there have been no side-by-side comparisons of different materials on well-defined, nanostructured surfaces. This article will describe how a multiscale patterning approach based on soft interference lithography can be used to create plasmonic crystals with different unit cell shapes—circular holes or square pyramids—which can be used as a platform to screen for new materials. The dispersion diagrams of plasmonic crystals made from unconventional metals will be presented, and the implications of discovering new optical coupling mechanisms and protein-sensing substrates based on Pd will be described. Finally, the opportunities enabled by this plasmonic library to dial into specific resonances for any angle or material will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.W. Odom, C.L. Nehl, ACS Nano 2, 616 (2008).

    Google Scholar 

  2. M.L. Brongersma, P. Kik, Surface Plasmon Nanophotonics (Springer, NY, 2007).

    Google Scholar 

  3. P. Stiles, J. Dieringer, N.C. Shah, R.P.V. Duyne, Ann. Rev. Anal. Chem. 1, 601 (2008).

    Google Scholar 

  4. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Heidelberg, 1988).

    Google Scholar 

  5. R.F. Oulton, V.J. Sorger, D.A. Genov, D.F.P. Pile, X. Zhang, Nat. Photonics 2, 496 (2008).

    Google Scholar 

  6. V.M. Shalaev, Nat. Photonics 1, 41 (2006).

    Google Scholar 

  7. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Baral, X. Zhang, Nature 455, 376 (2008).

    Google Scholar 

  8. M.A. Cooper, Nat. Rev. Drug Discovery 1, 515 (2002).

    Google Scholar 

  9. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D.B. Bogy, X. Zhang, Nat. Nanotechnol. 3, 733 (2008).

    Google Scholar 

  10. X. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, J. Am. Chem. Soc 128, 2115 (2006).

    Google Scholar 

  11. J. Homola, Surface Plasmon Resonance Based Sensors (Springer, NY, 2006).

    Google Scholar 

  12. V.E. Ferry, L.A. Sweatlock, D. Pacifici, H.A. Atwater, Nano Lett. 8, 4391 (2008).

    Google Scholar 

  13. J. Dintinger, A. Degiron, T.W. Ebbesen, MRS Bull. 30, (2005).

  14. H. Gao, J.M. McMahon, M.H. Lee, J. Henzie, S.K. Gray, G.C. Schatz, T.W. Odom, Opt. Express 17, 2334 (2009).

    Google Scholar 

  15. H. Gao, J. Henzie, M.H. Lee, T.W. Odom, Proc. Nat. Acad. Sci. 105, (2008).

  16. J. Henzie, M.H. Lee, T.W. Odom, Nat. Nanotechnol. 2, 549 (2007).

    Google Scholar 

  17. F. Le, D.W. Brandl, Y.A. Urzhumov, H. Wang, J. Kundu, N.J. Halas, J. Aizpurua, P. Nordlander, ACS Nano 2 (2008).

  18. M.H. Lee, H. Gao, T.W. Odom, Nano Lett. 9, 2584 (2009).

    Google Scholar 

  19. A. Tao, P. Sinsermsuksakul, P. Yang, Nat. Nanotechnol. 2, 435 (2006).

    Google Scholar 

  20. T. Zentgraf, A. Christ, J. Kuhl, N.A. Gippius, S.G. Tikhodeev, D. Nau, H. Giessen, Phys. Rev. B 73, (2006).

  21. M.E. Stewart, N.H. Mack, V. Malyarchuk, J.A.N.T. Soares, T. Lee, S.K. Gray, R.G. Nuzzo, J.A. Rogers, PNAS, 103, 17143 (2006).

    Google Scholar 

  22. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature 391, 667 (1998).

    Google Scholar 

  23. J. Henzie, M.H. Lee, T.W. Odom, Nat. Nanotechnol. 2, 549 (2007).

    Google Scholar 

  24. J. Henzie, J. Lee, M.H. Lee, W. Hasan, T.W. Odom, Annu. Rev. Phys. Chem. 60, 147 (2009).

    Google Scholar 

  25. H. Gao, J. Henzie, T.W. Odom, Nano Lett. 6, 2104 (2006).

    Google Scholar 

  26. E.-S. Kwak, J. Henzie, S.-T. Chang, S.K. Gray, G.C. Schatz, T.W. Odom, Nano Lett. 5, 1963 (2005).

    Google Scholar 

  27. W.L. Barnes, A.W. Murray, J. Dintinger, E. Devaux, H.J. Lezec, T.W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004).

    Google Scholar 

  28. W.L. Barnes, T.W. Priest, S.C. Kitson, J.R. Sambles, Phys. Rev. B 54, 6227 (1996).

    Google Scholar 

  29. A. Krishnan, T. Thio, T.J. Kim, H.J. Lezec, T.W. Ebbesen, P.A. Wolff, J. Pendry, L. Martin-Moreno, F.J. Garcia-Vidal, Opt. Commun. 200, 1 (2001).

    Google Scholar 

  30. J.M. McMahon, J. Henzie, T.W. Odom, G.C. Schatz, S.K. Gray, Opt. Express 15, 18119 (2007).

    Google Scholar 

  31. D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).

    Google Scholar 

  32. L. Martin-Moreno, F.J. Gracia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, T.W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001).

    Google Scholar 

  33. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972).

    Google Scholar 

  34. P.B. Johnson, R.W. Christy, Phys. Rev. B 9, 5056 (1974).

    Google Scholar 

  35. X. Jiang, D.A. Bruzewicz, M.M. Thant, G.M. Whitesides, Anal. Chem. 76, 6116 (2004).

    Google Scholar 

  36. T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D.S. Sutherland, M. Kall, Nano Lett. 5, 2335 (2005).

    Google Scholar 

  37. A. Leebeeck, L. Kumar, V. Lange, D. Sinton, R. Gordon, A. Brolo, Anal. Chem. 79, 4094 (2007).

    Google Scholar 

  38. K. Kuriharaa, K. Nakamurab, K. Suzuki, Sens. Actuators, B 86, 49 (2002).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odom, T.W. Materials Screening and Applications of Plasmonic Crystals. MRS Bulletin 35, 66–73 (2010). https://doi.org/10.1557/mrs2010.618

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.618

Navigation