Skip to main content
Log in

Electronic Properties of Organic-Based Interfaces

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Organic-based interfaces can possess a range of surprising electronic properties that are of intense interest from both the basic science and the applied research points of view. In this issue of MRS Bulletin, we provide state-of-the-art overviews of selected topics involving three complementary aspects of the electronic properties of organic-based interfaces: the nascent electronics technologies that would gain from improved understanding and control of such interfaces; the novel properties that organic-based interfaces may possess; and the experimental and theoretical challenges afforded by such studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.R. Forrest, S.E. Thompson, Chem. Rev. 107, 923 (2007).

    Google Scholar 

  2. N. Koch, ChemPhysChem 8, 1438 (2007).

    Google Scholar 

  3. J. Hwang, A. Wan, A. Kahn, Mater. Sci. Eng. R 64, 1 (2009).

    Google Scholar 

  4. C.J. Brabec, Solar Energy Mater. Solar Cells 83, 273 (2004).

    Google Scholar 

  5. J.L. Bredas, J.R. Durrant, Acc. Chem. Res. 42, 1689 (2009).

    Google Scholar 

  6. A. Aviram, M.A. Ratner, Chem. Phys. Lett. 29, 277 (1974).

    Google Scholar 

  7. A. Nitzan, M.A. Ratner, Science 300, 1384 (2003).

    Google Scholar 

  8. A. Jalabert, A. Amara, F. Clermidy, Molecular Electronics Materials, Devices and Applications (Springer, Berlin, 2009).

    Google Scholar 

  9. L. Venkataraman, J.E. Klare, I.W. Tam, C. Nuckolls, M.S. Hybertsen, M. Steigerwald, Nano Lett. 6, 458 (2006).

    Google Scholar 

  10. A. Vilan, O. Yaffe, A. Biller, A. Salomon, A. Kahn, D. Cahen, Adv. Mater. 22, 140 (2010).

    Google Scholar 

  11. D. Cahen, R. Naaman, Z. Vager, Adv. Funct. Mater. 15, 1571 (2005).

    Google Scholar 

  12. I. Carmeli, G. Leitus, R. Naaman, S. Reich, Z. Vager, J. Chem. Phys. 118, 10372 (2003).

    Google Scholar 

  13. R. Temirov, S. Soubatch, A. Luican, F.S. Tautz, Nature 444, 350 (2006).

    Google Scholar 

  14. L. Segev, A. Salomon, A. Natan, D. Cahen, L. Kronik, F. Amy, C.K. Chan, A. Kahn, Phys. Rev. B 74, 165323 (2006).

    Google Scholar 

  15. C.H. Schwalb, S. Sachs, M. Marks, A. Scholl, F. Reinert, E. Umbach, U. Hofer, Phys. Rev. Lett. 101, 146801 (2008).

    Google Scholar 

  16. L. Romaner, G. Heimel, J.-L. Brédas, A. Gerlach, F. Schreiber, R.L. Johnson, J. Zegenhagen, S. Duhm, N. Koch, E. Zojer, Phys. Rev. Lett. 99, 256801 (2007).

    Google Scholar 

  17. X.-Y. Zhu, Q. Yang, M. Muntwiler, Acc. Chem. Res. 42, 1779 (2009).

    Google Scholar 

  18. V.M. Agranovich, D.M. Basko, G.C. La Rocca, F. Bassani, J. Phys., Condens. Matter 10, 9369 (1998).

    Google Scholar 

  19. S. Blumstengel, S. Sadofev, C. Xu, J. Puls, F. Henneberger, Phys. Rev. Lett. 97, 237401 (2006).

    Google Scholar 

  20. Y. Selzer, L. Cai, M.A. Cabassi, Y. Yao, J.M. Tour, T.S. Mayer, D.L. Allara, Nano Lett. 5, 61 (2005).

    Google Scholar 

  21. D. Deutsch, A. Natan, Y. Shapira, L. Kronik, J. Am. Chem. Soc. 129, 2989 (2007).

    Google Scholar 

  22. G. Heimel, L. Romaner, E. Zojer, J.L. Bredas, Acc. Chem. Res. 41, 721 (2008).

    Google Scholar 

  23. S. Duhm, G. Heimel, I. Salzmann, H. Glowatzki, R.L. Johnson, A. Vollmer, J.P. Rabe, N. Koch, Nat. Mater. 7, 326 (2008).

    Google Scholar 

  24. D. Cahen, A. Kahn, E. Umbach, Mater. Today 32 (July/August 2005).

  25. N. Ueno, S. Kera, Prog. Scuf. Sci. 83, 490 (2008).

    Google Scholar 

  26. H. Ishii, K. Sugiyama, E. Ito, K. Seki, Adv. Mater. 11, 605 (1999).

    Google Scholar 

  27. N. Marom, O. Hod, G.E. Scuseria, L. Kronik, J. Chem. Phys. 128, 164107 (2008).

    Google Scholar 

  28. J.B. Neaton, M.S. Hybertsen, S.G. Louie, Phys. Rev. Lett. 97, 216405 (2006).

    Google Scholar 

  29. L. Romaner, D. Nabok, P. Puschnig, E. Zojer, C. Ambrosch-Draxl, New J. Phys. 11, 053010 (2009).

    Google Scholar 

  30. G. Mercurio, E.R. McNellis, I. Martin, S. Hagen, F. Leyssner, S. Soubatch, J. Meyer, M. Wolf, P. Tegeder, F.S. Tautz, K. Reuter, Phys. Rev. Lett. 104, 036102 (2010).

    Google Scholar 

  31. L.J. Brillson, Surfaces and Interfaces of Electronic Materials (Wiley-IEEE, NJ, 2010).

    Google Scholar 

  32. H. Alves, A.S. Molinari, H. Xie, A.F. Morpurgo, Nature Materials 7, 574 (2008).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kronik, L., Koch, N. Electronic Properties of Organic-Based Interfaces. MRS Bulletin 35, 417–421 (2010). https://doi.org/10.1557/mrs2010.578

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.578

Navigation