Skip to main content
Log in

New Nanofabrication Strategies: Inspired by Biomineralization

  • Articles
  • Published:
MRS Bulletin Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Nature produces a wide variety of exquisite mineralized tissues, fulfilling diverse functions. Organisms exercise a level of molecular control over the detailed nano- and microstructure of the biomaterials that is unparalleled in today’s technology. Our understanding of the underlying design principles of biomaterials provides ample opportunities for developing new approaches to materials fabrication at the nanometer and micrometer scale. It is clear that valuable materials lessons can be taught by any organism. I will exemplify this point by describing new nano- and microfabrication strategies and devices that have been inspired by the studies of biomineralization in echinoderms. The topics will include self-assembly, control of crystallization, synthesis of adaptive optical structures, hybrid materials, and novel actuation systems at the nanoscale level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.C. Sundar, A.D. Yablon, J.L. Grazul, M. Ilan, J. Aizenberg, Nature, 424, 899 (2003).

    Google Scholar 

  2. J. Aizenberg, V.C. Sundar, A.D. Yablon, J.C. Weaver, G. Chen, Proc. Nat. Acad. Sci. USA, 101, 3358 (2004).

    Google Scholar 

  3. J. Aizenberg, J.C. Weaver, M.S. Thanawala, V.C. Sundar, D.E. Morse, P. Fratzl, Science 309, 275 (2005).

    Google Scholar 

  4. A. Woesz, J. Weaver, M. Kazanci, Y. Dauphin, J. Aizenberg, D. Morse, P. Fratzl, J. Mater. Res. 21, 2068 (2006).

    Google Scholar 

  5. J.C. Weaver, J. Aizenberg, G.E. Fantner, D. Kisailus, A. Woesz, P. Allen, K. Fields, et al., J. Struct. Biol. 158, 93 (2007).

    Google Scholar 

  6. A. Miserez, J.C. Weaver, P.J. Thurner, J. Aizenberg, Y. Dauphin, P. Fratzl, D.E. Morse, F.W. Zok, Adv. Funct. Mater. 18, 1 (2008).

    Google Scholar 

  7. S. Albeck, J. Aizenberg, L. Addadi, S. Weiner, J. Am. Chem. Soc., 115 (25), 11691 (1993).

  8. J. Aizenberg, S. Albeck, S. Weiner, L. Addadi, J. Cryst. Growth, 142, 156 (1994).

    Google Scholar 

  9. L. Addadi, J. Aizenberg, S. Albeck, A. Berman, L. Leiserowitz, S. Weiner, Mol. Cryst. Liquid Cryst. Sci. Technol., 248, 185 (1994).

    Google Scholar 

  10. J. Aizenberg, G. Lambert, L. Addadi, S. Weiner, Adv. Mat., 8, 222 (1996).

    Google Scholar 

  11. E. Beniash, J. Aizenberg, L. Addadi, S. Weiner, Proc. R. Soc. Lond. B., 264, 461 (1997).

    Google Scholar 

  12. J. Aizenberg, J. Hanson, T. F. Koetzle, S. Weiner, L. Addadi, J. Am. Chem. Soc., 119, 881 (1997).

    Google Scholar 

  13. J. Aizenberg, A.J. Black, G.M. Whitesides, Nature, 394, 868 (1998).

    Google Scholar 

  14. J. Aizenberg, A.J. Black, G.M. Whitesides, J. Am. Chem. Soc., 121, 4500 (1999).

    Google Scholar 

  15. J. Aizenberg, A.J. Black, G.M. Whitesides, Nature, 398, 495 (1999).

    Google Scholar 

  16. J. Aizenberg, J. Chem. Soc. Dalton Trans., 21, 3963 (2000).

    Google Scholar 

  17. J. Aizenberg, J. Cryst. Growth, 211, 143 (2000).

    Google Scholar 

  18. S. Friebel, J. Aizenberg, S. Abad, P. Wiltzius, Appl. Phys. Lett., 77, 2406 (2000).

    Google Scholar 

  19. J. Aizenberg, P. V. Braun, P. Wiltzius, Phys. Rev. Lett., 84, 2997 (2000).

    Google Scholar 

  20. Y.-J. Han, J. Aizenberg, J. Am. Chem. Soc., 125, 4032 (2003).

    Google Scholar 

  21. J. Aizenberg, D.A. Muller, J.L. Grazul, D.R. Hamann, Science, 299, 1205 (2003).

    Google Scholar 

  22. Y.-J. Han, J. Aizenberg, Angew. Chem. Int. Ed., 42, 3668 (2003).

    Google Scholar 

  23. J. Aizenberg, Adv. Mater., 16, 1295 (2004).

    Google Scholar 

  24. Y.-J. Han, L.M. Wysocky, M. Thanawala, T. Siegrist, J. Aizenberg, Angew. Chem. Int. Ed., 44, 2386 (2005).

    Google Scholar 

  25. S.-Y. Kwak, E. DiMasi, Y.-J. Han, J. Aizenberg, Cryst. Growth Des. 5, 2139 (2005).

    Google Scholar 

  26. A.L. Briseno, J. Aizenberg, Y.-J. Han, R.A. Penkala, H. Moon, A.J. Lovinger, C. Kloc, Z. Bao, J. Am. Chem. Soc. 127 (35), 12164 (2005).

  27. B. Pokroy, J. Aizenberg, CrystEngComm. 9, 1219 (2007).

    Google Scholar 

  28. T. Y.-J. Han, J. Aizenberg, Chem. Mater. 20, 1064 (2008).

    Google Scholar 

  29. B. Pokroy, V.F. Chernow, J. Aizenberg, Langmuir 25, 14002 (2009).

    Google Scholar 

  30. C.E. Killian, R.A. Metzler, Y.U.T. Gong, I.C. Olson, J. Aizenberg, Y. Politi, F.H. Wilt, J. Am. Chem. Soc. 131, 18404 (2009).

    Google Scholar 

  31. J. Aizenberg, A. Tkachenko, S. Weiner, L. Addadi, G. Hendler, Nature, 412, 819 (2001).

    Google Scholar 

  32. J. Aizenberg, G. Hendler, J. Mater. Chem., 14, 2066 (2004).

    Google Scholar 

  33. S. Yang, G. Chen, M. Megens, C.K. Ullal, Y.-J. Han, R. Rapaport, E.L. Thomas, J. Aizenberg, Adv. Mater., 17, 435 (2005).

    Google Scholar 

  34. S. Yang, C.K. Ullal, E.L. Thomas, G. Chen, J. Aizenberg, Appl. Phys. Lett. 86, 201121 (2005).

    Google Scholar 

  35. S. Yang, J. Ford, C. Ruengruglikit, Q. Huang, J. Aizenberg, J. Mater. Chem. 15, 4200 (2005).

    Google Scholar 

  36. S. Yang, J. Aizenberg, Nano Today, 12, 40 (2005).

    Google Scholar 

  37. K.-S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, S. Yang, J. Micromech. Microeng., 16, 1660 (2006).

    Google Scholar 

  38. A. Sidorenko, T. Krupenkin, A. Taylor, P. Fratzl, J. Aizenberg, Science 315, 487 (2007).

    Google Scholar 

  39. A. Sidorenko, T. Krupenkin, J. Aizenberg, J. Mater. Chem. 18, 3841 (2008).

    Google Scholar 

  40. P. Kim, L.D. Zarzar, X. Zhao, A. Sidorenko, J. Aizenberg, Soft Matter 6, 750 (2010).

    Google Scholar 

  41. B. Pokroy, A.K. Epstein, M.C.M. Gulda Persson, J. Aizenberg, Adv. Mater. 21, 463 (2009).

    Google Scholar 

  42. B. Pokroy, S.H. Kang, L. Mahadevan, J. Aizenberg, Science, 323, 237 (2009).

    Google Scholar 

  43. H.A. Lowenstam, S. Weiner, On Biomineralization (Oxford University Press, Oxford, 1989).

    Google Scholar 

  44. S.A. Wainwright, W.D. Biggs, J.D. Currey, J.M. Gosline, Mechanical Design in Organisms (Wiley, New York, 1976).

    Google Scholar 

  45. S. Mann, Nature 365, 499 (1993).

    Google Scholar 

  46. Y. Xia, G.M. Whitesides, Angew. Chem. Int. Ed. 37, 550 (1998).

    Google Scholar 

  47. J. Aizenberg, S. Weiner, L. Addadi, Connect. Tissue Res., 44, 20 (2003).

    Google Scholar 

  48. J. Aizenberg, G. Lambert, S. Weiner, L. Addadi, J. Am. Chem. Soc., 124, 32 (2002).

    Google Scholar 

  49. Y. Politi, T. Arad, E. Klein, S. Weiner, L. Addadi, Science 306, 1161 (2004).

    Google Scholar 

  50. P. Fratzl, F. D. Fischer, J. Svoboda, J. Aizenberg, Acta Biomater. 6, 1001 (2010).

    Google Scholar 

  51. E.E. Ruppert, R.S. Fox, R.B. Barnes, Invertebrate Zoology (Brooks Cole Thomson, Belmont, CA, 2004).

    Google Scholar 

  52. S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P.M. Chaikin, W.B. Russel, Chem. Mater., 14, 2831 (2002).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aizenberg, J. New Nanofabrication Strategies: Inspired by Biomineralization. MRS Bulletin 35, 323–330 (2010). https://doi.org/10.1557/mrs2010.555

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.555

Navigation