Skip to main content
Log in

Graphene: Materially Better Carbon

  • Articles
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Graphene, a single atom–thick plane of carbon atoms arranged in a honeycomb lattice, has captivated the attention of physicists, materials scientists, and engineers alike over the five years following its experimental isolation. Graphene is a fundamentally new type of electronic material whose electrons are strictly confined to a two-dimensional plane and exhibit properties akin to those of ultrarelativistic particles. Graphene’s two-dimensional form suggests compatibility with conventional wafer processing technology. Extraordinary physical properties, including exceedingly high charge carrier mobility, current-carrying capacity, mechanical strength, and thermal conductivity, make it an enticing candidate for new electronic technologies both within and beyond complementary metal oxide semiconductors (CMOS). Immediate graphene applications include high-speed analog electronics and highly conductive, flexible, transparent thin films for displays and optoelectronics. Currently, much graphene research is focused on generating and tuning a bandgap and on novel device structures that exploit graphene’s extraordinary electrical, optical, and mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Oshima, A. Nagashima, J. Phys. 9, 1 (1997).

    Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004).

    Google Scholar 

  3. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, PNAS 102, 10451 (2005).

    Google Scholar 

  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005).

    Google Scholar 

  5. Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005).

    Google Scholar 

  6. V.P. Gusynin, S.G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005).

    Google Scholar 

  7. C. Berger, Z.M. Song, X.B. Li, X.S. Wu, N. Brown, C. Naud, D. Mayo, T.B. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Science 312, 1191 (2006).

    Google Scholar 

  8. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Nature 457, 706 (2009).

    Google Scholar 

  9. X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Science 324, 1312 (2009).

    Google Scholar 

  10. A. Reina, X.T. Jia, J. Ho, D. Nezich, H.B. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett. 9, 30 (2009).

    Google Scholar 

  11. J.H. Chen, C. Jang, S.D. Xiao, M. Ishigami, M.S. Fuhrer, Nat. Nanotechnol. 3, 206 (2008).

    Google Scholar 

  12. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, A.K. Geim, Phys. Rev. Lett. 100, 016602 (2008).

    Google Scholar 

  13. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Commun. 146, 351 (2008).

    Google Scholar 

  14. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008).

    Google Scholar 

  15. B. Standley, W. Bao, H. Zhang, J. Bruck, C.N. Lau, M. Bockrath, Nano Lett. 8, 3345 (2008).

    Google Scholar 

  16. J. Moser, A. Barreiro, A. Bachtold, Appl. Phys. Lett. 91, 163513 (2007).

    Google Scholar 

  17. P.R. Wallace, Phys. Rev. 71, 622 (1947).

    Google Scholar 

  18. T. Ando, T. Nakanishi, R. Saito, J. Phys. Soc. Jpn. 67, 2857 (1998).

    Google Scholar 

  19. P.L. McEuen, M. Bockrath, D.H. Cobden, Y.G. Yoon, S.G. Louie, Phys. Rev. Lett. 83, 5098 (1999).

    Google Scholar 

  20. A. Bachtold, M.S. Fuhrer, S. Plyasunov, M. Forero, E.H. Anderson, A. Zettl, P.L. McEuen, Phys. Rev. Lett. 84, 6082 (2000).

    Google Scholar 

  21. M. Purewal, B.H. Hong, A. Ravi, B. Chandra, J. Hone, P. Kim, Phys. Rev. Lett, 98, 186808 (2007).

    Google Scholar 

  22. A.B. Fowler, F.F. Fang, W.E. Howard, P.J. Stiles, J. Phys. Soc. Jpn. S 21, 331 (1966).

    Google Scholar 

  23. C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008).

    Google Scholar 

  24. J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. van der Zande, J.M. Parpia, H.G. Craighead, P.L. McEuen, Nano Lett. 8, 2458 (2008).

    Google Scholar 

  25. W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, C.N. Lau, Nat. Nanotechnol. 4, 562 (2009).

    Google Scholar 

  26. E.-A. Kim, A.H. Castro Neto, Europhys. Lett. 84, 57007 (2008).

    Google Scholar 

  27. M.I. Katsnelson, A.K. Geim, Philos. Trans. R. Soc. A 366, 195 (2008).

    Google Scholar 

  28. F. Guinea, B. Horovitz, P. Le Doussal, Phys. Rev. B 77, 205421 (2008).

    Google Scholar 

  29. F. Guinea, M.I. Katsnelson, M.A.H. Vozmediano, Phys. Rev. B 77, 075422 (2008).

    Google Scholar 

  30. A.L.V. de Parga, F. Calleja, B. Borca, M.C.G. Passeggi, J.J. Hinarejos, F. Guinea, R. Miranda, Phys. Rev. Lett. 100, 056807 (2008).

    Google Scholar 

  31. V.M. Pereira, A.H. Castro Neto, (2008), arXiv:0810.4539v1.

  32. Z. Chen, W. Jang, W. Bao, C.N. Lau, C. Dames, Appl. Phys. Lett. 95, 161910 (2009).

    Google Scholar 

  33. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006).

    Google Scholar 

  34. P. Blake, E.W. Hill, A.H.C. Neto, K.S. Novoselov, D. Jiang, R. Yang, T.J. Booth, A.K. Geim, Appl. Phys. Lett. 91 (2007).

  35. A.B. Kuzmenko, E. van Heumen, F. Carbone, D. van der Marel, Phys. Rev. Lett. 100, 117401 (2008).

    Google Scholar 

  36. K.F. Mak, M.Y. Sfeir, W. Yang, L. Chun Hung, J.A. Misewich, T.F. Heinz, Phys. Rev. Lett. 101, 196405 (2008).

    Google Scholar 

  37. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320, 1308 (2008).

    Google Scholar 

  38. C. Berger, Z.M. Song, T.B. Li, X.B. Li, A.Y. Ogbazghi, R. Feng, Z.T. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, J. Phys. Chem. B 108, 19912 (2004).

    Google Scholar 

  39. S. Cho, M.S. Fuhrer, Phys. Rev. B 77, 081402 (2008).

    Google Scholar 

  40. S. Adam, E.H. Hwang, V.M. Galitski, S. Das Sarma, PNAS 104, 18392 (2007).

    Google Scholar 

  41. C. Jang, S. Adam, J.-H. Chen, E.D. Williams, S. Das Sarma, M.S. Fuhrer, Phys. Rev. Lett. 101, 146805 (2008).

    Google Scholar 

  42. J.-H. Chen, C. Jang, M. Ishigami, S. Xiao, E.D. Williams, M.S. Fuhrer, Solid State Commun. 149, 1080 (2009).

    Google Scholar 

  43. J.-H. Chen, W.G. Cullen, C. Jang, M.S. Fuhrer, E.D. Williams, Phys. Rev. Lett. 102, 236805 (2009).

    Google Scholar 

  44. M. Hentschel, F. Guinea, Phys. Rev. B 76, 115407 (2007).

    Google Scholar 

  45. T. Stauber, N.M.R. Peres, F. Guinea, Phys. Rev. B 76, 205423 (2007).

    Google Scholar 

  46. N.H. Shon, T. Ando, J. Phys. Soc. Jpn. 67, 2421 (1998).

    Google Scholar 

  47. T. Ando, J. Phys. Soc. Jpn. 75, 074716 (2006).

    Google Scholar 

  48. E.H. Hwang, S. Adam, S. Das Sarma, Phys. Rev. Lett. 98, 186806 (2007).

    Google Scholar 

  49. K. Nomura, A.H. MacDonald, Phys. Rev. Lett. 98, 076602 (2007).

    Google Scholar 

  50. E. Rossi, S. Adam, S. Das Sarma, Phys. Rev. B 79, 245423 (2009).

    Google Scholar 

  51. K. Hess, P. Vogl, Solid State Commun. 30, 807 (1979).

    Google Scholar 

  52. S. Fratini, F. Guinea, Phys. Rev. B 77, 195415 (2008).

    Google Scholar 

  53. E.H. Hwang, S. Das Sarma, Phys. Rev. B 77, 115449 (2008).

    Google Scholar 

  54. B.R. Bennett, R. Magno, J.B. Boos, W. Kruppa, M.G. Ancona, Solid-State Electron. 49, 1875 (2005).

    Google Scholar 

  55. K.I. Bolotin, K.J. Sikes, J. Hone, H.L. Stormer, P. Kim, Phys. Rev. Lett. 101, 096802 (2008).

    Google Scholar 

  56. X. Du, I. Skachko, A. Barker, E.Y. Andrei, Nat. Nanotechnol. 3, 491 (2008).

    Google Scholar 

  57. H. Wang, D. Nezich, J. Kong, T. Palacios, IEEE Electron Device Lett. 30, 547 (2009).

    Google Scholar 

  58. Y.-M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.-Y. Chiu, A. Grill, Ph. Avouris, Science 327, 662 (2010).

    Google Scholar 

  59. K. Nakata, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 54, 17954 (1996).

    Google Scholar 

  60. Y.W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006).

    Google Scholar 

  61. Y.W. Son, M.L. Cohen, S.G. Louie, Nature 444, 347 (2006).

    Google Scholar 

  62. L.Y. Jiao, L. Zhang, X.R. Wang, G. Diankov, H.J. Dai, Nature 458, 877 (2009).

    Google Scholar 

  63. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Nature 458, 872 (2009).

    Google Scholar 

  64. Z.H. Chen, Y.M. Lin, M.J. Rooks, P. Avouris, Phys. E 40, 228 (2007).

    Google Scholar 

  65. M.Y. Han, B. Ozyilmaz, Y.B. Zhang, P. Kim, Phys. Rev. Lett. 98, 206805 (2007).

    Google Scholar 

  66. X.L. Li, X.R. Wang, L. Zhang, S.W. Lee, H.J. Dai, Science 319, 1229 (2008).

    Google Scholar 

  67. X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, H. Dai, Phys. Rev. Lett. 100, 206803 (2008).

    Google Scholar 

  68. F. Sols, F. Guinea, A.H.C. Neto, Phys. Rev. Lett. 99, 166803 (2007).

    Google Scholar 

  69. K. Todd, H.T. Chou, S. Amasha, D. Goldhaber-Gordon, Nano Lett. 9, 416 (2009).

    Google Scholar 

  70. L.C. Campos, V.R. Manfrinato, J.D. Sanchez-Yamagishi, J. Kong, P. Jarillo-Herrero, Nano Lett. 9, 2600 (2009).

    Google Scholar 

  71. L. Ci, Z. Xu, L. Wang, W. Gao, F. Ding, K. Kelly, B. Yakobson, P. Ajayan, Nano Res. 1, 116 (2008).

    Google Scholar 

  72. S.S. Datta, D.R. Strachan, S.M. Khamis, A.T.C. Johnson, Nano Lett. 8, 1912 (2008).

    Google Scholar 

  73. D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Science 323, 610 (2009).

    Google Scholar 

  74. S. Ryu, M.Y. Han, J. Maultzsch, T.F. Heinz, P. Kim, M.L. Steigerwald, L.E. Brus, Nano Lett. 8, 4597 (2008).

    Google Scholar 

  75. J.R. Lomeda, C.D. Doyle, D.V. Kosynkin, W.-H. Hwang, J.M. Tour, J. Am. Chem. Soc. 130, 16201 (2008).

    Google Scholar 

  76. E. Bekyarova, M.E. Itkis, P. Ramesh, C. Berger, M. Sprinkle, W.A. de Heer, R.C. Haddon, J. Am. Chem. Soc. 131, 1336 (2009).

    Google Scholar 

  77. D.W. Boukhvalov, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. B 77, 035427 (2008).

    Google Scholar 

  78. K. Novoselov, Phys. World 27 (2009).

  79. J.O. Sofo, A.S. Chaudhari, G.D. Barber, Phys. Rev. B 75, 153401 (2007).

    Google Scholar 

  80. A.V. Shytov, D.A. Abanin, L.S. Levitov, Phys. Rev. Lett. 103, 016806 (2009).

    Google Scholar 

  81. L.A. Chernozatonskii, P.B. Sorokin, J.W. Bruning, Appl. Phys. Lett. 91, 183103 (2007).

    Google Scholar 

  82. E. McCann, V.I. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006).

    Google Scholar 

  83. K.S. Novoselov, E. McCann, S.V. Morozov, V.I. Fal’ko, M.I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, A.K. Geim, Nature Phys. 2, 177 (2006).

    Google Scholar 

  84. E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J. Dos Santos, J. Nilsson, F. Guinea, A.K. Geim, A.H. Castro Neto, Phys. Rev. Lett. 99, 216802 (2007).

    Google Scholar 

  85. E. McCann, Phys. Rev. B 74, 161403 (2006).

    Google Scholar 

  86. T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science 313, 951 (2006).

    Google Scholar 

  87. K.F. Mak, C.H. Lui, J. Shan, T.F. Heinz, Phys. Rev. Lett. 102, 256405 (2009).

    Google Scholar 

  88. Y.B. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Nature 459, 820 (2009).

    Google Scholar 

  89. J.B. Oostinga, H.B. Heersche, X.L. Liu, A.F. Morpurgo, L.M.K. Vandersypen, Nat. Mater. 7, 151 (2008).

    Google Scholar 

  90. I. Zutic, J. Fabian, S.D. Sarma, Rev. Mod. Phys. 76, 323 (2004).

    Google Scholar 

  91. S. Cho, Y.-F. Chen, M.S. Fuhrer, Appl. Phys. Lett. 91, 123105 (2007).

    Google Scholar 

  92. W. Han, K. Pi, W. Bao, K.M. McCreary, Y. Li, W.H. Wang, C.N. Lau, R.K. Kawakami, Appl. Phys. Lett. 94, 222109 (2009).

    Google Scholar 

  93. N. Tombros, C. Jozsa, M. Popinciuc, H.T. Jonkman, B.J. van Wees, Nature 448, 571 (2007).

    Google Scholar 

  94. N. Tombros, S. Tanabe, A. Veligura, C. Jozsa, M. Popinciuc, H.T. Jonkman, B.J. van Wees, Phys. Rev. Lett. 101, 046601 (2008).

    Google Scholar 

  95. S.H. Abedinpour, M. Polini, A.H. MacDonald, B. Tanatar, M.P. Tosi, G. Vignale, Phys. Rev. Lett. 99, 206802 (2007).

    Google Scholar 

  96. P. San-Jose, E. Prada, E. McCann, H. Schomerus, Phys. Rev. Lett. 102, 247204 (2009).

    Google Scholar 

  97. H. Min, G. Borghi, M. Polini, A.H. MacDonald, Phys. Rev. B 77, 041407 (2008).

    Google Scholar 

  98. J.J. Su, A.H. MacDonald, Nat. Phys. 4, 799 (2008).

    Google Scholar 

  99. H.K. Min, R. Bistritzer, J.J. Su, A.H. MacDonald, Phys. Rev. B 78, 121401 (2008).

    Google Scholar 

  100. E. Tutuc, personal communication.

  101. I.W. Frank, D.M. Tanenbaum, A.M. Van der Zande, P.L. McEuen, J. Vac. Sci. Technol. B 25, 2558 (2007).

    Google Scholar 

  102. J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Science 315, 490 (2007).

    Google Scholar 

  103. P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D. Jiang, F. Schedin, L.A. Ponomarenko, S.V. Morozov, H.F. Gleeson, E.W. Hill, A.K. Geim, K.S. Novoselov, Nano Lett. 8, 1704 (2008).

    Google Scholar 

  104. F. Schedin, K.S. Novoselov, S.V. Morozov, D. Jiang, E.H. Hill, P. Blake, A.K. Geim, Nat. Mater. 6, 652 (2007).

    Google Scholar 

  105. M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, Adv. Mater. 10, 725 (1998).

    Google Scholar 

  106. C.R. Sides, F. Croce, V.Y. Young, C.R. Martin, B. Scrosati, Electrochem. Solid State Lett. 8, A484 (2005).

    Google Scholar 

  107. H. Zhang, G.P. Cao, Z.Y. Wang, Y.S. Yang, Z.J. Shi, Z.N. Gu, Nano Lett. 8, 2664 (2008).

    Google Scholar 

  108. W.M. Zhang, J.S. Hu, Y.G. Guo, S.F. Zheng, L.S. Zhong, W.G. Song, L.J. Wan, Adv. Mater. 20, 1160 (2008).

    Google Scholar 

  109. M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, R.S. Ruoff, Nano Lett. 8, 3498 (2008).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuhrer, M.S., Lau, C.N. & MacDonald, A.H. Graphene: Materially Better Carbon. MRS Bulletin 35, 289–295 (2010). https://doi.org/10.1557/mrs2010.551

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.551

Navigation