Skip to main content
Log in

Designing and Engineering Stem Cell Niches

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Stem cells have received a lot of attention due to great promises in medical treatment, for example, by replacing lost and sick cells and re-constituting cell populations. There are several classes of stem cells, including embryonic, fetal, and adult tissue specific. More recently, the generation of so-called induced pluripotent stem (iPS) cells from differentiated cells has been established. Common criteria for all types of stem cells include their ability to self-renew and to retain their ability to differentiate in response to specific cues. These characteristics, as well as the instructive steering of the cells into differentiation, are largely dependent on the microenvironment surrounding the cells. Such “stem cell friendly” microenvironments, provided by structural and biochemical components, are often referred to as niches. Biomaterials offer attractive solutions to engineer functional stem cell niches and to steer stem cell state and fate in vitro as well as in vivo. Among materials used so far, promising results have been achieved with low-toxicity and biodegradable polymers, such as polyglycolic acid and related materials, as well as other polymers used as structural “scaffolds” for engineering of extracellular matrix components. To improve the efficiency of stem cell control and the design of the biomaterials, interfaces among stem cell research, developmental biology, regenerative medicine, chemical engineering, and materials research are rapidly developing. Here we provide an introduction to stem cell biology and principles of niche engineering and give an overview of recent advancements in stem cell niche engineering from two stem cell systems—blood and brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.L. Weissman, D.J. Anderson, F. Gage, Annu. Rev. Cell Dev. Biol. 17, 387 (2001).

    Google Scholar 

  2. S. He, D. Nakada, S.J. Morrison, Annu. Rev. Cell Dev. Biol. 25, 377 (2009).

    Google Scholar 

  3. D. Bryder, D.J. Rossi, I.L. Weissman, Am. J. Pathol. 169, 338 (2006).

    Google Scholar 

  4. B. Galliot, E. Tanaka, A. Simon, Cell. Mol. Life Sci. 65, 3 (2008).

    Google Scholar 

  5. O. Hermanson, PLoS Biol. 6, e271 (2008).

    Google Scholar 

  6. F.D. Miller, A. Gauthier-Fisher, Cell Stem Cell 4, 507 (2009).

    Google Scholar 

  7. S. Ilkhanizadeh, A.I. Teixeira, O. Hermanson, Biomaterials 28, 3936 (2007).

    Google Scholar 

  8. A.I. Teixeira, J.K. Duckworth, O. Hermanson, Cell Res. 17, 56 (2007).

    Google Scholar 

  9. S. Levenberg, N.F. Huang, E. Lavik, A.B. Rogers, J. Itskovitz-Eldor, R. Langer, Proc. Natl. Acad. Sci. U.S.A. 100, 12741 (2003).

    Google Scholar 

  10. G.A Silva, C. Czeisler, K.L. Niece, E. Beniash, D.A. Harrington, J.A. Kessler, S.I. Stupp, Science 303, 1352 (2004).

    Google Scholar 

  11. M.P. Prabhakaran, J.R. Venugopal, S. Ramakrishna, Biomaterials 30, 4996 (2009).

    Google Scholar 

  12. Y. Soen, A. Mori, T.D. Palmer, P.O. Brown, Mol. Syst. Biol. 2, 37 (2006).

    Google Scholar 

  13. M. Nakajima, T. Ishimuro, K. Kato, I.K. Ko, I. Hirata, Y. Arima, H. Iwata, Biomaterials 28, 1048 (2007).

    Google Scholar 

  14. S.R. Hynes, M.F. Rauch, J.P. Bertram, E.B. Lavik, J. Biomed. Mater. Res. A 89, 499 (2009).

    Google Scholar 

  15. A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Cell 126, 677 (2006).

    Google Scholar 

  16. N.D. Leipzig, M.S. Shoichet, Biomaterials 30, 6867 (2009).

    Google Scholar 

  17. K. Saha, A.J. Keung, E.F. Irwin, Y. Li, L. Little, D.V. Schaffer, K.E. Healy, Biophys. J. 95, 4426 (2008).

    Google Scholar 

  18. A.I. Teixeira, S. Ilkhanizadeh, J.A. Wigenius, J.K. Duckworth, O. Inganäs, O. Hermanson, Biomaterials 30, 4567 (2009).

    Google Scholar 

  19. K.I. Park, Y.D. Teng, E.Y. Snyder, Nat. Biotechnol. 20, 1111 ( 2002).

    Google Scholar 

  20. Y. Xiong, Y.S. Zeng, C.G. Zeng, B.L. Du, L.M. He, D.P. Quan, W. Zhang, J.M. Wang, J.L. Wu, Y. Li, J. Li, Biomaterials 30, 3711 (2009).

    Google Scholar 

  21. Y.D. Teng, E.B. Lavik, X. Qu, K.I. Park, J. Ourednik, D. Zurakowski, R. Langer, E.Y. Snyder, Proc. Natl. Acad. Sci. U.S.A. 99, 3024 (2002).

    Google Scholar 

  22. H.E. Olson, G.E. Rooney, L. Gross, J.J. Nesbitt, K.E. Galvin, A. Knight, B. Chen, M.J. Yaszemski, A.J. Windebank, Tissue Eng. Part A 15, 1797 (2009).

    Google Scholar 

  23. E. Bible, D.Y. Chau, M.R. Alexander, J. Price, K.M. Shakesheff, M. Modo, Biomaterials 30, 2985 (2009).

    Google Scholar 

  24. B.A. Tucker, S.M. Redenti, C. Jiang, J.S. Swift, H.J. Klassen, M.E. Smith, G.E. Wnek, M.J. Young, Biomaterials 31, 9 (2010).

    Google Scholar 

  25. M. Tomita, E. Lavik, H. Klassen, T. Zahir, R. Langer, M.J. Young, Stem Cells 23, 1579 (2005).

    Google Scholar 

  26. F. Gelain, D. Bottai, A. Vescovi, S. Zhang, PLoS One 1, e119 (2006).

    Google Scholar 

  27. H. Yokoi, T. Kinoshita, S. Zhang, Proc. Natl. Acad. Sci. U.S.A. 102, 8414 (2005).

    Google Scholar 

  28. T. Nakaji-Hirabayashi, K. Kato, H. Iwata, Biomaterials 30, 4581 (2009).

    Google Scholar 

  29. Y.C. Kuo, C.F. Yeh, J.T. Yang, Biomaterials 30, 6604 (2009).

    Google Scholar 

  30. K.D. Newman, M.W. McBurney, Biomaterials 25, 5763 (2004).

    Google Scholar 

  31. U. Freudenberg, A. Hermann, P.B. Welzel, K. Stirl, S.C. Schwarz, M. Grimmer, A. Zieris, W. Panyanuwat, S. Zschoche, D. Meinhold, A. Storch, C. Werner, Biomaterials 30, 5049 (2009).

    Google Scholar 

  32. A. Spiegel, A. Kalinkovich, S. Shivtiel, O. Kollet, T. Lapidot, Cell Stem Cell 3, 484 (2008).

    Google Scholar 

  33. R.N. Kaplan, B. Psaila, D. Lyden, Trends Mol. Med. 13, 72 (2007).

    Google Scholar 

  34. C. Lo Celso, J.W. Wu, C.P. Lin, J. Biophotonics 2, 619 (2009).

    Google Scholar 

  35. C. Lo Celso, H.E. Fleming, J.W. Wu, C.X. Zhao, S. Miake-Lye, J. Fujisaki, D. Cote, D.W. Rowe, C.P. Lin, D.T. Scadden, Nature 457, 92 (2009).

    Google Scholar 

  36. L.M. Calvi, G.B. Adams, K.W. Weibrecht, J.M. Weber, D.P. Olson, M.C. Knight, R.P. Martin, E. Schipani, P. Divieti, F.R. Bringhurst, L.A. Milner, H.M. Kronenberg, D.T. Scadden, Nature 425, 841 (2003).

    Google Scholar 

  37. J. Zhang, C. Niu, L. Ye, H. Huang, X. He, W.-G. Tong, J. Ross, J. Haug, T. Johnson, J.Q. Feng, S. Harris, L.M. Wiedemann, Y. Mishina, L. Li, Nature 425, 836 (2003).

    Google Scholar 

  38. P.J. Simmons, J.P. Levesque, A.C. Zannettino, Baillieres Clin. Haematol. 10, 485 (1997).

    Google Scholar 

  39. S. Stier, Y. Ko, R. Forkert, C. Lutz, T. Neuhaus, E. Grunewald, T. Cheng, D. Dombkowski, L.M. Calvi, S.R. Rittling, D.T. Scadden, J. Exp. Med. 201, 1781 (2005).

    Google Scholar 

  40. P. Gupta, T.R. Oegema Jr., J.J. Brazil, A.Z. Dudek, A. Slungaard, C.M. Verfaillie, Blood 92, 4641 (1998).

    Google Scholar 

  41. S.K. Nilsson, D.N. Haylock, H.M. Johnston, T. Occhiodoro, T.J. Brown, P.J. Simmons, Blood 101, 856 (2003).

    Google Scholar 

  42. S. Inoue, D.G. Osmond, Anat. Rec. 264, 294 (2001).

    Google Scholar 

  43. M.B. Bowie, D.G. Kent, M.R. Copley, C.J. Eaves, Blood 109, 5043 (2007).

    Google Scholar 

  44. J.J. Trowbridge, M.P. Scott, M. Bhatia, Proc. Natl. Acad. Sci. U.S.A. 103, 14134 (2006).

    Google Scholar 

  45. G. de Haan, E. Weersing, B. Dontje, R. van Os, L.V. Bystrykh, E. Vellenga, G. Miller, Dev. Cell 4, 241 (2003).

    Google Scholar 

  46. K. Willert, J.D. Brown, E. Danenberg, A.W. Duncan, I.L. Weissman, T. Reya, J.R. Yates 3rd, R. Nusse, Nature 423, 448 (2003).

    Google Scholar 

  47. F. Ramirez, D.B. Rifkin, Matrix Biol. 22, 101 (2003).

    Google Scholar 

  48. P. Eliasson, J.I. Jonsson, J. Cell. Physiol. 222, 17 (2010).

    Google Scholar 

  49. G.B. Adams, K.T. Chabner, I.R. Alley, D.P. Olson, Z.M. Szczepiorkowski, M.C. Poznansky, C.H. Kos, M.R. Pollak, E.M. Brown, D.T. Scadden, Nature 439, 599 (2006).

    Google Scholar 

  50. G.B. Adams, Regen. Med. 3, 523 (2008).

    Google Scholar 

  51. S. Yamazaki, H. Nakauchi, Curr. Opin. Hematol. 16, 255 (2009).

    Google Scholar 

  52. M. Hines, L. Nielsen, J. Cooper-White, J. Chem. Technol. Biotechnol. 83, 421 (2008).

    Google Scholar 

  53. M. Battiwalla, P. Hematti, Cytotherapy 11, 503 (2009).

    Google Scholar 

  54. F.P. Seib, K. Muller, M. Franke, M. Grimmer, M. Bornhauser, C. Werner, Tissue Eng. Part A 15, 3161 (2009).

    Google Scholar 

  55. P.W. Zandstra, E. Conneally, A.L. Petzer, J.M. Piret, C.J. Eaves, Proc. Natl. Acad. Sci. U.S.A. 94, 4698 (1997).

    Google Scholar 

  56. K. Franke, T. Pompe, M. Bornhauser, C. Werner, Biomaterials 28, 836 (2007).

    Google Scholar 

  57. H.S. Kim, J.B. Lim, Y.H. Min, S.T. Lee, C.J. Lyu, E.S. Kim, H.O. Kim, Int. J. Hematol. 78, 126 (2003).

    Google Scholar 

  58. J. Oswald, C. Steudel, K. Salchert, B. Joergensen, C. Thiede, G. Ehninger, C. Werner, M. Bornhauser, Stem Cells 24, 494 (2006).

    Google Scholar 

  59. Q. Feng, C. Chai, X.S. Jiang, K.W. Leong, H.Q. Mao, J. Biomed. Mater. Res. A 78, 781 (2006).

    Google Scholar 

  60. X.S. Jiang, C. Chai, Y. Zhang, R.X. Zhuo, H.Q. Mao, K.W. Leong, Biomaterials 27, 2723 (2006).

    Google Scholar 

  61. B. Ehring, K. Biber, T.M. Upton, D. Plosky, M. Pykett, M. Rosenzweig, Cytotherapy 5, 490 (2003).

    Google Scholar 

  62. K.N. Chua, C. Chai, P.C. Lee, S. Ramakrishna, K.W. Leong, H.Q. Mao, Exp. Hematol. 35, 771 (2007).

    Google Scholar 

  63. T. Suzuki, Y. Yokoyama, K. Kumano, M. Takanashi, S. Kozuma, T. Takato, T. Nakahata, M. Nishikawa, S. Sakano, M. Kurokawa, S. Ogawa, S. Chiba, Stem Cells 24, 2456 (2006).

    Google Scholar 

  64. Z. Kertesz, V. Vas, J. Kiss, V.S. Urban, E. Pozsonyi, A. Kozma, K. Paloczi, F. Uher, Cell Biol. Int. 30, 401 (2006).

    Google Scholar 

  65. S. Kishimoto, F. Oonuma, S. Nakamura, H. Hattori, Y. Mori, Y. Tanaka, Y. Harada, M. Tagawa, M. Ishihara, J. Biomed. Mater. Res. Part B Appl. Biomater. 92, 32 (2010).

    Google Scholar 

  66. S. Kishimoto, S. Nakamura, H. Hattori, F. Oonuma, Y. Kanatani, Y. Tanaka, Y. Harada, M. Tagawa, T. Maehara, M. Ishihara, J. Control. Release 133, 185 (2009).

    Google Scholar 

  67. K. Alberti, R.E. Davey, K. Onishi, S. George, K. Salchert, F.P. Seib, M. Bornhauser, T. Pompe, A. Nagy, C. Werner, P.W. Zandstra, Nat. Methods 5, 645 (2008).

    Google Scholar 

  68. R. Peerani, P.W. Zandstra, J. Clin. Invest. 120, 60 (2010).

    Google Scholar 

  69. M.P. Lutolf, R. Doyonnas, K. Havenstrite, K. Koleckar, H.M. Blau, Integr. Biol. (Camb) 1, 59 (2009).

    Google Scholar 

  70. I. Kurth, K. Franke, T. Pompe, M. Bornhauser, C. Werner, Integr. Biol. (Camb) 1, 427 (2009).

    Google Scholar 

  71. S. Yamazaki, A. Iwama, S. Takayanagi, Y. Morita, K. Eto, H. Ema, H. Nakauchi, EMBO J. 25, 3515 (2006).

    Google Scholar 

  72. A.S. Garcia, S.M. Dellatore, P.B. Messersmith, W.M. Miller, Langmuir 25, 2994 (2009).

    Google Scholar 

  73. M.P. Lutolf, P.M. Gilbert, H.M. Blau, Nature 462, 433 (2009).

    Google Scholar 

  74. S. Yamanaka, H.M. Blau, Nature 465, 704 (2010).

    Google Scholar 

  75. P.B. Gupta, C.L. Chaffer, R.A. Weinberg, Nat. Med. 15, 1010 (2009).

    Google Scholar 

  76. http://en.wikipedia.org/wiki/Transcription_factor.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teixeira, A.I., Hermanson, O. & Werner, C. Designing and Engineering Stem Cell Niches. MRS Bulletin 35, 591–596 (2010). https://doi.org/10.1557/mrs2010.527

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.527

Navigation