Skip to main content
Log in

Chemical epitaxy of semiconductor thin films

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Epitaxial thin films of semiconductor materials are mostly formed on single crystal substrates using physical and chemical vapor phase deposition techniques. This article focuses on a much less common technique for synthesis of epitaxial thin films, chemical bath deposition (CBD) from solution, which offers a simple, inexpensive, and scalable alternative. One of the major advantages of CBD is in sequential processing, where low deposition temperatures help minimize interdiffusion. We outline the CBD pathway to epitaxial semiconductor films and provide examples for well-defined orientation relationships between film and substrate pairs in a variety of epitaxial systems. The influence of the chemical nature, structure, and orientation of the substrate on the incipient films is outlined, as well as the effect of parameters such as solution composition, bath temperature, and pH for controlling the film morphology and its consequent physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.B. Freund, S. Suresh, Thin Film Materials—Stress, Defect Formation and Surface Evolution (Cambridge University Press, UK, 2003), p. 31.

    Google Scholar 

  2. D.L. Smith, Thin Film Deposition—Principles and Practice (McGraw-Hill, N Y, 1995), p. 221.

    Google Scholar 

  3. J.A. Venables, Introduction to Surface and Thin Film Processes (Cambridge University Press, UK, 2000), p. 144.

    Google Scholar 

  4. G. Hodes, Chemical Solution Deposition of Semiconductor Films (Marcel Dekker, Inc., New York-Basel, 2002).

    Google Scholar 

  5. S. Gorer, G. Hodes, J. Phys. Chem. 98, 5338 (1994).

    Google Scholar 

  6. M. Shandalov, Y Golan, Chem. Mater. 18, 3593 (2006).

    Google Scholar 

  7. D.W. Pashley, A Historical Review of Epitaxy in: Epitaxial Growth—Part A J.W. Matthews, Ed. (Academic Press, NY, 1975), p. 2.

    Google Scholar 

  8. D. Lincot, R. Ortega-Borges, Appl. Phys. lett. 64 (5), 569 (1994).

    Google Scholar 

  9. D. Lincot, A. Kampmann, B. Mokili, J. Vedel, R. Cortés, M. Froment, Appl. Phys. Lett. 67 (16), 2355 (1995).

    Google Scholar 

  10. M. Froment, M.C. Bernard, R. Cortés, B. Makili, D. Lincot, J. Electrochem. Soc. 142 (8), 2642 (1995).

    Google Scholar 

  11. D. Lincot, M.J. Furlong, M. Froment, R. Cortés, M.C. Bernard, Mat. Res. Soc. Symp. Proc. 451, 223 (1997).

    Google Scholar 

  12. M.J. Furlong, M. Froment, M.C. Bernard, R. Cortés, A.N. Tiwari, M. Krejci H. Zogg, D. Lincot, J. Crystal Growth 193, 114 (1998).

    Google Scholar 

  13. D. Lincot, B. Mokili, R. Cortés, M. Froment, Microsc. Microanal. Microstruct 7, 217 (1996).

    Google Scholar 

  14. H. Cachet, R. Cortés, M. Froment, G. Maurin, N. Shramchenko, J. Electrochem. Soc. 144 (10), 3583 (1997).

    Google Scholar 

  15. N.C. Sharma, D.K. Pandya, H.K. Sehgal, K.L. Chopra, Thin Solid Films 59, 157 (1979).

    Google Scholar 

  16. T. Sahoo, J.W. Ju, V. Kannan, J.S. Kim, Y.T. Yu, M.S. Han, YS. Park, I.H. Lee Mater. Res. Bull. 43, 502 (2008).

    Google Scholar 

  17. T. Sahoo, J.W. Jeon, V. Kannan, C.R. Lee, Y.T. Yu, Y.W. Song, I.H. Lee, Thin Solid Films 516, 8244 (2008).

    Google Scholar 

  18. T. Sahoo, E.S. Kang, M. Kim, V. Kannan, Y.T. Yu, D.C. Shin, T.G. Kim, I.H. Lee, J. Crystal Growth 310, 570 (2008).

    Google Scholar 

  19. D. Andeen, J.H. Kim, F.F. Lange, G.K.L. Goh, S. Tripathy, Adv. Funct. Mater, 16, 799 (2006).

    Google Scholar 

  20. F.F. Lange, Science 273, 903 (1996).

    Google Scholar 

  21. D. Andeen, L. Loeffler, N. Padture, F.F. Lange, J. Crystal Growth 259, 103 (2003).

    Google Scholar 

  22. A.Y.L. Sim, G.K.L. Goh, S. Tripathy, D. Andeen, F.F. Lange, Electrochim. Acta 52, 2933 (2007).

    Google Scholar 

  23. B. Wessler, A. Steinecker, W. Mader, J. Cryst. Growth 242, 283 (2002).

    Google Scholar 

  24. M. Isshiki, T. Endo, K. Masumoto, Y Usui, J. Electrochem. Soc. 137 (9), 2697 (1990).

    Google Scholar 

  25. J.L. Davis, M.K. Norr, J. Appl. Phys. 37 (4), 1670 (1966).

    Google Scholar 

  26. S. Watanabe, Y Mita, J. Electrochem. Soc. 116 (7), 989 (1969).

    Google Scholar 

  27. A. Osherov, V. Ezersky, Y. Golan, J. Cryst. Growth 3 08, 334 (2007).

    Google Scholar 

  28. A. Osherov, M. Shandalov, V. Ezersky, Y. Golan, J. Cryst. Growth 304 (1), 169 (2007).

    Google Scholar 

  29. A. Osherov, V. Ezersky, Y. Golan, (unpublished results).

  30. R. Cortés, M. Froment, B. Mokili, D. Lincot, Philos. Mag. Letts. 73, 209 (1994).

    Google Scholar 

  31. G. Guizzetti, F. Filippini, E. Reguzzoni, G. Samoggia, Phys. Status Solidi A 6, 605 (1971).

    Google Scholar 

  32. A. Osherov, Y. Golan, Phys. Status Solidi C 5, 3431 (2008).

    Google Scholar 

  33. Y. Golan, L. Margulis, I. Rubinstein, G. Hodes, Langmuir 8, 749 (1992).

    Google Scholar 

  34. M. Shandalov, Y. Golan, Eur. Phys. J. Appl. Phys. 31, 27 (2005).

    Google Scholar 

  35. D.W. Pashley, Adv. Phys. 5 (18), 175 (1956).

    Google Scholar 

  36. D.W. Pashley, Adv. Phys. 14, 327 (1965).

    Google Scholar 

  37. R. Medlin, J. Fiala, J. Cryst. Growth 275, e1643 (2005).

    Google Scholar 

  38. M. Shandalov, Y. Golan, Eur. Phys. J. Appl. Phys. 24, 13 (2003).

    Google Scholar 

  39. M. Shandalov, Y. Golan, Eur. Phys. J. Appl. Phys. 28, 51 (2004).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osherov, A., Golan, Y. Chemical epitaxy of semiconductor thin films. MRS Bulletin 35, 790–796 (2010). https://doi.org/10.1557/mrs2010.508

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.508

Navigation