Skip to main content

Advertisement

Log in

Electrodeposition of nanowires for the detection of hydrogen gas

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Nanowires composed of noble metals are attractive candidates for chemical sensors because they are both ductile and chemically stable in air. The single application where electrodeposited metal nanowires have had the largest impact is that of hydrogen gas (H2) sensing. The development of sensitive, selective, power-efficient, rapid-responding, and inexpensive H2 sensors, for the purpose of detecting leaked H2 in proximity to devices such as fuel cells, is an active area of research. In this application, a change in the dc electrical resistance of the nanowire from its background value signals the presence of H2 and provides an estimate of its concentration. Two types of nanowires have been studied for use as hydrogen sensors: Electrodeposited nanowires composed of pure palladium metal (Pd) reversibly absorb hydrogen to form a hydride according to Pd + xH2 → PdH2x. Alternatively, nanowires that transduce the presence of H2 may be prepared by decorating an inert, electrically conductive support such as a carbon nanotube or a nickel nanowire with one or more eletrodeposited palladium nanoparticles. These palladium nanoparticles impart selectivity to H2 and cause the electrical conductivity of the composite particle/support to be modulated in the presence of H2. Here we summarize recent contributions of electrodeposition to the development of nanowire-based sensors for H2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Cui, Q.Q. Wei, H.K. Park, C.M. Lieber, Science 293, 1289 (2001).

    Google Scholar 

  2. D.N. Reinhoudt, Sens. Actuators, B 24, 197 (1995).

    Google Scholar 

  3. D.N. Reinhoudt, J.F.J. Engbersen, Z. Brzozka, H.H. Vandenvlekkert, G.W.N. Honig, H.A.J. Holterman, U.H. Verkerk, Anal. Chem. 66, 3618 (1994).

    Google Scholar 

  4. F. Patolsky, G.F. Zheng, C.M. Lieber, Nat. Protoc. 1, 1711 (2006).

    Google Scholar 

  5. W.U. Wang, C. Chen, K.H. Lin, Y. Fang, C.M. Lieber, Proc. Natl. Acad. Sci. U.S.A. 102, 3208 (2005).

    Google Scholar 

  6. F. Patolsky, G.F. Zheng, O. Hayden, M. Lakadamyali, X.W. Zhuang, C.M. Lieber, Proc. Natl. Acad. Sci. U.S.A. 101, 14017 (2004).

    Google Scholar 

  7. E. Comini, G. Faglia, G. Sberveglieri, Z.W. Pan, Z.L. Wang, Appl. Phys. Lett. 81, 1869 (2002).

    Google Scholar 

  8. F. Hernandez-Ramirez, J.D. Prades, A. Tarancon, S. Barth, O. Casals, R. Jimenez-Diaz, E. Pellicer, J. Rodriguez, M.A. Juli, A. Romano-Rodriguez, J.R. Morante, S. Mathur, A. Helwig, J. Spannhake, G. Mueller, Nanotechnol. 18 (2007).

  9. F. Hernandez-Ramirez, A. Tarancon, O. Casals, J. Arbiol, A. Romano- Rodriguez, J.R. Morante, Sens. Actuators, B 121, 3 (2007).

    Google Scholar 

  10. N.D. Hoa, N.V. Quy, D. Kim, Sens. Actuators, B 142, 253 (2009).

    Google Scholar 

  11. H. Huang, Y.C. Lee, O.K. Tan, W. Zhou, N. Peng, Q. Zhang, Nanotechnol. 20 (2009).

  12. A. Kolmakov, Y.X. Zhang, G.S. Cheng, M. Moskovits, Adv. Mater. 15, 997 (2003).

    Google Scholar 

  13. A. Kolmakov, Y.X. Zhang, M. Moskovits, Nano Lett. 3, 1125 (2003).

    Google Scholar 

  14. Y. Shen, T. Yamazaki, Z.F. Liu, D. Meng, T. Kikuta, J. Alloys Compd. 488, L21 (2009).

    Google Scholar 

  15. Y.B. Shen, T. Yamazaki, Z.F. Liu, D. Meng, T. Kikuta, N. Nakatani, M. Saito, M. Mori, Sens. Actuators, B 135, 524 (2009).

    Google Scholar 

  16. V.V. Sysoev, J. Goschnick, T. Schneider, E. Strelcov, A. Kolmakov, Nano Lett. 7, 3182 (2007).

    Google Scholar 

  17. V.V. Sysoev, T. Schneider, J. Goschnick, I. Kiselev, W. Habicht, H. Hahn, E. Strelcov, A. Kolmakov, Sens. Actuators, B 139, 699 (2009).

    Google Scholar 

  18. L.C. Tien, D.P. Norton, B.P. Gila, S.J. Pearton, H.T. Wang, B.S. Kang, F. Ren, Appl. Surf. Sci. 253, 4748 (2007).

    Google Scholar 

  19. Q. Wan, J. Huang, Z. Xie, T.H. Wang, E.N. Dattoli, W. Lu, Appl. Phys. Lett. 92 (2008).

  20. L.A. Lewis, The Palladium Hydrogen System (Academic Press, London, 1967).

    Google Scholar 

  21. R.C. Hughes, W.K. Schubert, J. Appl. Phys. 71, 542 (1992).

    Google Scholar 

  22. The Department of Energy, Vol. Funding Opportunity Announcement: DE-PS36-09G099004 (The Department of Energy: Golden, CO, 2009).

  23. M.A. Bangar, K. Ramanathan, M. Yun, C. Lee, C. Hangarter, N.V. Myung, Chem. Mater. 16, 4955 (2004).

    Google Scholar 

  24. Y. Im, C. Lee, R.P. Vasquez, M.A. Bangar, N.V. Myung, E.J. Menke, R.M Penner, M.H. Yun, Small 2, 356 (2006).

    Google Scholar 

  25. M.H. Yun, N.V. Myung, R.P. Vasquez, C.S. Lee, E. Menke, R.M. Penner, Nano Lett. 4, 419 (2004).

    Google Scholar 

  26. YS. Hu, D. Perello, U. Mushtaq, M.H. Yun, IEEE Trans. Nanotechnol. 7, 693 (2008).

    Google Scholar 

  27. Y. Hu, A.C. To, M. Yun, Nanotechnology 20 (2009).

  28. J. Kong, M.G. Chapline, H.J. Dai, Adv. Mater. 13, 1384 (2001).

    Google Scholar 

  29. D.R. Kauffman, D.C. Sorescu, D.P Schofi eld, B.L. Allen, K.D. Jordan, A. Star Nano Lett. 10, 958 (2010).

    Google Scholar 

  30. B.L. Allen, P.D. Kichambare, A. Star, ACS Nano 2, 1914 (2008)

    Google Scholar 

  31. D.R. Kauffman, A. Star, Angew. Chem. Int. Ed. 47, 6550 (2008).

    Google Scholar 

  32. Y.G. Sun, H.H. Wang, Adv. Mater. 19, 2818 (2007).

    Google Scholar 

  33. Y.G. Sun, H.H. Wang, Appl. Phys. Lett 90 (2007).

  34. S. Mubeen, B. Yoo, N.V. Myung, Appl. Phys. Lett. 93, (2008).

  35. T. Zhang, S. Mubeen, N.V. Myung, M.A. Deshusses, Nanotechnol. 19 (2008)

  36. S. Mubeen, T. Zhang, B. Yoo, M.A. Deshusses, N.V. Myung, J. Phys. Chem. C 111, 6321 (2007).

    Google Scholar 

  37. V.R. Khalap, T. Sheps, A.A. Kane, P.G. Collins, Nano Lett. 10, 896 (2010).

    Google Scholar 

  38. Y. Kanai, V.R. Khalap, P.G. Collins, J.C. Grossman, Phys. Rev Lett. 104 (2010).

  39. B.R. Goldsmith, J.G. Coroneus, A.A. Kane, G.A. Weiss, P.G. Collins, Nano Lett. 8, 189 (2008).

    Google Scholar 

  40. R. Dasari, F.P Zamborini, J. Am. Chem. Soc. 130, 16138 (2008).

    Google Scholar 

  41. F. Favier, E.C. Walter, M.P Zach, T. Benter, R.M. Penner, Science 293, 2227 (2001).

    Google Scholar 

  42. E.C. Walter, F. Favier, R.M. Penner, Anal. Chem. 74, 1546 (2002).

    Google Scholar 

  43. E.C. Walter, B.J. Murray, F. Favier, G. Kaltenpoth, M. Grunze, R.M. Penner J. Phys. Chem. B 106, 11407 (2002).

    Google Scholar 

  44. E.C. Walter, M.P. Zach, F. Favier, B.J. Murray, K. Inazu, J.C. Hemminger, R.M Penner, ChemPhysChem 4, 131 (2003).

    Google Scholar 

  45. E.J. Menke, M.A. Thompson, C. Xiang, L.C. Yang, R.M. Penner, Nat. Mater. 5, 914 (2006).

    Google Scholar 

  46. C.X. Xiang, S.C. Kung, D.K. Taggart, F. Yang, M.A. Thompson, A.G. Guell, Y.A. Yang, R.M. Penner, ACS Nano 2, 1939 (2008).

    Google Scholar 

  47. C.X. Xiang, Y.G. Yang, R.M. Penner, Chem. Commun. 859 (2009).

  48. Y Yang, S.C. Kung, D.K. Taggart, C. Xiang, F. Yang, M.A. Brown, A.G. Guell T.J. Kruse, J.C. Hemminger, R.M. Penner, Nano Lett. 8, 2447 (2008).

    Google Scholar 

  49. Y. Yang, D. Taggart, M.A. Brown, F. Yang, J.C. Hemminger, R.M. Penner, ACS Nano 3, 4144 (2010).

    Google Scholar 

  50. E.C. Walter, K. Ng, M.P. Zach, R.M. Penner, F. Favier, Microelectron. Eng. 61–2, 555 (2002).

    Google Scholar 

  51. E.C. Walter, R.M. Penner, H. Liu, K.H. Ng, M.P. Zach, F. Favier, Surf. Interface Anal. 34, 409 (2002).

    Google Scholar 

  52. F. Yang, D.K. Taggart, R.M. Penner, Nano Lett. 9, 2177 (2009).

    Google Scholar 

  53. F. Dimeo, I.S. Chen, P. Chen, J. Neuner, A. Roerhl, J. Welch, Sens. Actuators, B 117, 10 (2006).

    Google Scholar 

  54. V.R. Khalap, T. Sheps, A.A. Kane, P.G. Collins, Nano Lett. 10, 896 (2010)

    Google Scholar 

  55. E. Menke, M.A. Thompson, C. Xiang, L.C. Yang, R.M. Penner, Nat. Mater. 5 914 (2006).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penner, R.M. Electrodeposition of nanowires for the detection of hydrogen gas. MRS Bulletin 35, 771–777 (2010). https://doi.org/10.1557/mrs2010.506

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.506

Navigation