Skip to main content
Log in

Nonpolar-Oriented GaN Films for Polarization-Sensitive and Narrow-Band Photodetectors

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article reviews the optical polarization properties of unstrained and strained GaN films with a nonpolar orientation. In unstrained a -plane GaN films, the A exciton becomes completely linearly polarized perpendicular to the c-axis, whereas the B and C excitons are only partially polarized. In m -plane or a -plane GaN films under anisotropic in-plane compressive strain, all three interband transitions between the three uppermost valence bands and the conduction band can become linearly polarized for sufficiently large strain values. The complete linear polarization can be directly observed in reflection, transmission, or photoreflectance by a polarization-dependent energy gap. This complete linear polarization can be used to realize polarization-sensitive photodetectors in the ultraviolet spectral range, which do not need a polarization filter in front of the photodetector. By combining a polarization filter and photodetector or two photodetectors from the same material with their c-axes oriented perpendicular to each other, a narrowband photodetection configuration can be achieved in the ultraviolet spectral range with a band width below 8 nm. Since both realizations are also polarization sensitive, a configuration with four photodetectors is necessary to achieve narrow-band sensitivity regardless of the polarization state of the incident light. At the same time, the configuration with four photodetectors allows for the determination of the absolute angle of polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Waltereit, O. Brandt, M. Ramsteiner, R. Uecker, P. Reiche, K.H. Ploog, J. Cryst. Growth 218, 143 (2000).

    Google Scholar 

  2. P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K.H. Ploog, Nature (London) 406, 865 (2000).

    Google Scholar 

  3. S. Ghosh, P. Waltereit, O. Brandt, H.T. Grahn, K.H. Ploog, Phys. Rev. B 65, 075202 (2002).

    Google Scholar 

  4. P. Misra, U. Behn, O. Brandt, H.T. Grahn, B. Imer, S. Nakamura, S.P. DenBaars, J.S. Speck, Appl. Phys. Lett. 88, 161920 (2006).

    Google Scholar 

  5. K. Kojima, M. Ueda, M. Funato, Y. Kawakami, Phys. Status Solidi B 244, 1853 (2007).

    Google Scholar 

  6. N.F. Gardner, J.C. Kim, J.J. Wierer, Y.C. Shen, M.R. Krames, Appl. Phys. Lett. 86, 111101 (2005).

    Google Scholar 

  7. R. Wirth, A. Moritz, C. Geng, F. Scholz, A. Hangleiter, Appl. Phys. Lett. 69, 2225 (1996).

    Google Scholar 

  8. E. Greger, P. Riel, M. Moser, T. Kippenberg, P. Kiesel, G.H. Döhler, Appl. Phys. Lett. 71, 3245 (1997).

    Google Scholar 

  9. H. Temkin, M.B. Panish, R.A. Logan, Appl. Phys. Lett. 47, 978 (1985).

    Google Scholar 

  10. J. Wang, M.S. Gudiksen, X. Duan, Y. Cui, C.M. Lieber, Science 293, 1455 (2001).

    Google Scholar 

  11. M. Razeghi, A. Rogalski, J. Appl. Phys. 79, 7433 (1996).

    Google Scholar 

  12. G. Parish, S. Keller, P. Kozodoy, J.P. Ibbetson, H. Marchand, P.T. Fini, S.B. Fleischer, S.P. DenBaars, U.K. Mishra, E.J. Tarsa, Appl. Phys. Lett. 75, 247 (1999).

    Google Scholar 

  13. E. Muñoz, E. Monroy, F. Calle, F. Omnès, P. Gibart, J. Geophys. Res. 105, 4865 (2000).

    Google Scholar 

  14. J.L. Pau, J. Anduaga, C. Rivera, Á. Navarro, I. Álava, M. Redondo, E. Muñoz, Appl. Opt. 45, 7498 (2006).

    Google Scholar 

  15. T. Li, J.H. Lambert, A.L. Beck, C.J. Collins, B. Yang, M.M. Wong, U. Chowdhury, R.D. Dupuis, J.C. Campbell, J. Electron. Mater. 30, 872 (2001).

    Google Scholar 

  16. M.A. Khan, M. Shatalov, H.P. Maruska, H.M. Wang, E. Kuokstis, Jpn. J. Appl. Phys. Part 1 44, 7191 (2005).

    Google Scholar 

  17. S. Ghosh, O. Brandt, H.T. Grahn, K.H. Ploog, Appl. Phys. Lett. 81, 3380 (2002).

    Google Scholar 

  18. C. Rivera, J.L. Pau, E. Muñoz, P. Misra, O. Brandt, H.T. Grahn, K.H. Ploog, Appl. Phys. Lett. 88, 213507 (2006).

    Google Scholar 

  19. G.A. Wilson, R.K. DeFreez, Proc. SPIE 5416, 157 (2004).

    Google Scholar 

  20. S.K. Zhang, W.B. Wang, F. Yun, L. He, H. Morkoç, X. Zhou, M. Tamargo, R.R. Alfano, Appl. Phys. Lett. 81, 4628 (2002).

    Google Scholar 

  21. U. Karrer, A. Dobner, O. Ambacher, M. Stutzmann, J. Vac. Sci. Technol. B 18, 757 (2000).

    Google Scholar 

  22. P. Misra, O. Brandt, H.T. Grahn, H. Teisseyre, M. Siekacz, C. Skierbiszewski, B. Łucznik, Appl. Phys. Lett. 91, 141903 (2007).

    Google Scholar 

  23. S. Ghosh, C. Rivera, J.L. Pau, E. Muñoz, O. Brandt, H.T. Grahn, Appl. Phys. Lett. 90, 091110 (2007).

    Google Scholar 

  24. C. Rivera, E. Muñoz, O. Brandt, H.T. Grahn, Appl. Phys. Lett. 91, 203514 (2007).

    Google Scholar 

  25. I. Grzegory, S. Krukowski, M. Leszczynski, P. Perlin, T. Suski, S. Porowski, in Nitride Semiconductors Handbook on Materials and Devices, P. Ruterana, M. Albrecht, J. Neugebauer, Eds. (Wiley, Weinheim, 2003), p. 1.

    Google Scholar 

  26. H. Teisseyre, C. Skierbiszewski, A. Khachapuridze, A. Feduniewicz-Źmuda, M. Siekacz, B. Łucznik, G. Kamler, M. Kryśko, T. Suski, P. Perlin, I. Grzegory, S. Porowski, Appl. Phys. Lett. 90, 081104 (2007).

    Google Scholar 

  27. G.L. Bir, G.E. Pikus, Symmetry and Strain Induced Effects in Semiconductors (Wiley, New York, 1974).

    Google Scholar 

  28. J.J. Hopfield, D.G. Thomas, Phys. Rev. 132, 563 (1963).

    Google Scholar 

  29. R. Stepniewski, K.P. Korona, A. Wysmołek, J.M. Baranowski, K. Pakuła, M. Potemski, G. Martinez, I. Grzegory, S. Porowski, Phys. Rev. B 56, 15151 (1997).

    Google Scholar 

  30. K. Kornitzer, T. Ebner, M. Grehl, K. Thonke, R. Sauer, C. Kirchner, V. Schwegler, M. Kamp, M. Leszczynski, I. Grzegory, S. Porowski, Phys. Status Solidi B 216, 5 (1999).

    Google Scholar 

  31. H.T. Grahn, in Nitrides with Nonpolar Surfaces: Growth, Properties and Devices, T. Paskova, Ed. (Wiley, Weinheim, 2008), pp. 155–183.

    Google Scholar 

  32. C. Rivera, P. Misra, J.L. Pau, E. Muñoz, O. Brandt, H.T. Grahn, K.H. Ploog, in Proceedings of the 6th Spanish Conference on Electronic Devices, San Lorenzo de El Escorial, Madrid, Spain, Jan. 30th to Feb. 2nd, (IEEE, Piscataway, 2007), pp. 250–253.

    Google Scholar 

  33. S. Ghosh, C. Rivera, J.L. Pau, E. Muñoz, O. Brandt, H.T. Grahn, Phys. Status Solidi A 205, 1100 (2008).

    Google Scholar 

  34. S. Ghosh, P. Misra, H.T. Grahn, B. Imer, S. Nakamura, S.P. DenBaars, J.S. Speck, J. Appl. Phys. 98, 026105 (2005).

    Google Scholar 

  35. J. Bhattacharyya, S. Ghosh, H.T. Grahn, Appl. Phys. Lett. 93, 051913 (2008).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grahn, H.T. Nonpolar-Oriented GaN Films for Polarization-Sensitive and Narrow-Band Photodetectors. MRS Bulletin 34, 341–347 (2009). https://doi.org/10.1557/mrs2009.97

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.97

Navigation