Skip to main content
Log in

Atomistic Simulations of Mechanics of Nanostructures

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Nanostructures can be in the form of nanoparticles or nanograins, nanowires or nanotubes, and nanoplates or multilayers. These nanostructures may be used individually or embedded in a bulk material. In both cases, they share two common features. First, the small dimensions minimize or even eliminate the presence of defects. Second, nanostructures entail large surface or interface areas. The absence of defects makes nanostructure materials stronger than their bulk counterparts, leading to the eventual realization of ideal strength. The presence of surfaces and interfaces may either reduce or increase the strength. Atomistic simulations can provide insight into the deformation mechanism at the atomic and electronic level, something that is very difficult to obtain from experiments. This article describes generic features of nanostructures and summarizes the five areas presented in the articles in this issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, Acta Mater. 48, 1 (2000).

    Google Scholar 

  2. L.X. Zhang, H.C. Huang, Appl. Phys. Lett. 89, 183111 (2006).

    Google Scholar 

  3. L.G. Zhou, H.C. Huang, Appl. Phys. Lett. 84, 1940 (2004).

  4. Y.F. Zhang, H.C. Huang, Nanoscale Res. Lett. 4, 34 (2009).

  5. L.X. Zhang, H.C. Huang, Appl. Phys. Lett. 90, 23115 (2007).

  6. C.L. Freeman, F. Claeyssens, N.L. Allan, and J.H. Harding, Phys. Rev. Lett. 96, 066102 (2006).

  7. P.W. Chung, Phys. Rev. B 73, 75433 (2006).

  8. H. Van Swygenhoven, P.M. Derlet, A.G. Froseth, Nat. Mater. 3, 399 (2004).

  9. C. Brandl, P.M. Derlet, H. Van Swygenhoven, Phys. Rev. B 76, 054124 (2007).

  10. A.G. Frøseth, H. Van Swygenhoven, P.M. Derlet, Acta Mater. 52, 2259 (2004).

  11. H. Van Swygenhoven, J.R. Weertman, Mater. Today 9, 24 (2006).

  12. M.S. Dresselhaus, H. Dai, Eds., MRS Bull. 29 (4) (2004).

  13. R.P. Vinci, S.P. Baker, Eds., MRS Bull. 27 (1) (2002).

  14. H. Kung, T. Foecke, Eds., MRS Bull. 24 (2) (1999).

  15. N.M. Ghoniem, S.H. Tong, L.Z. Sun, Phys. Rev. B 61, 913 (2000).

  16. M. Rhee, H.M. Zbib, J.P. Hirth, H. Huang, T. de la Rubia, Modell. Simul. Mater. Sci. Eng. 6, 467 (1998).

  17. B. Devincre, T. Hoc, L. Kubin, Science 320, 1745 (2008).

    Google Scholar 

  18. K.P. Chong, J. Phys. Chem. Solids 65, 1501 (2004).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, H., Van Swygenhoven, H. Atomistic Simulations of Mechanics of Nanostructures. MRS Bulletin 34, 160–166 (2009). https://doi.org/10.1557/mrs2009.46

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.46

Navigation