Skip to main content
Log in

Ferroelastic Nanostructures and Nanoscale Transitions: Ferroics with Point Defects

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

For decades, a kind of nanoscale microstructure, known as the premartensitic “tweed structure” or “mottled structure,” has been widely observed in various martensitic or ferroelastic materials prior to their martensitic transformation, but its origin has remained obscure. Recently, a similar nanoscale microstructure also has been reported in highly doped ferroelastic systems, but it does not change into martensite; instead, it undergoes a nanoscale freezing transition—“strain glass” transition—and is frozen into a nanodomained strain glass state. This article provides a concise review of the recent experimental and modeling/simulation effort that is leading to a unified understanding of both premartensitic tweed and strain glass. The discussion shows that the premartensitic tweed or strain glass is characterized by nano-sized quasistatic ferroelastic domains caused by the existence of random point defects or dopants in ferroelastic systems. The mechanisms behind the point-defect-induced nanostructures and glass phenomena will be reviewed, and their significance in ferroic functional materials will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.E. Tanner, D. Schryvers, S.M. Shapiro, Mater. Sci. Eng. A 127, 205 (1990).

    Google Scholar 

  2. Y. Murakami, H. Shibuya, D. Shindo, J. Microsc. 203, 22 (2001).

    Google Scholar 

  3. T. Castán, E. Vives, L. Mañosa, A. Planes, A. Saxena, in Magnetism and Structure in Functional Materials, A. Planes, L. Mañosa, A. Saxena, Eds., (Springer Verlag, Berlin, 2005), pp. 27–48.

    Google Scholar 

  4. X.H. Dai, Z. Xu, D. Viehland, Philos. Mag. A 70, 33 (1994).

    Google Scholar 

  5. X.H. Dai, Z. Xu, J.F. Li, D. Viehland, Philos. Mag. A 74, 395 (1996).

    Google Scholar 

  6. A. Saxena, T. Castán, A. Planes, M. Porta, Y. Kishi, T.A. Lograsso, D. Viehland, M. Wuttig, M. De Graef, Phys. Rev. Lett. 92, 197203 (2004).

    Google Scholar 

  7. W.W. Schmahl, A. Putnis, E. Salje, P. Freeman, A. Graeme-Barber, R. Jones, K.K. Singh, J. Blunt, P.P. Edwards, J. Loram, K. Mirza, Philos. Mag. Lett. 60, 241 (1989).

    Google Scholar 

  8. Y.W. Xu, M. Suenaga, J. Tafto, R.L. Sabatini, A.R. Moodenbaugh, P. Zolliker, Phys. Rev. B 39, 6667 (1989).

    Google Scholar 

  9. F. Millange, V. Caignaert, B. Domengès, B. Raveau, E. Suard, Chem. Mater. 10, 1974 (1998).

    Google Scholar 

  10. N. Mathur, P. Littlewood, Nat. Mater. 3, 207 (2004).

    Google Scholar 

  11. K.H. Ahn, T. Lookman, A.R. Bishop, Nature 428, 401 (2004).

    Google Scholar 

  12. E. Dagotto, Science 309, 257 (2005).

    Google Scholar 

  13. A.R. Bishop, T. Lookman, A. Saxena, S.R. Shenoy, Europhys. Lett. 63, 289 (2003).

    Google Scholar 

  14. S. Sarkar, X. Ren, K. Otsuka, Phys. Rev. Lett. 95, 205702 (2005).

    Google Scholar 

  15. Y. Wang, X. Ren, K. Otsuka, Phys. Rev. Lett. 97, 225703 (2006).

    Google Scholar 

  16. Y. Wang, X. Ren, K. Otsuka, A. Saxena, Phys. Rev. B 76, 132201 (2007).

    Google Scholar 

  17. Y. Wang, X. Ren, K. Otsuka, A. Saxena, Acta Mater. 56, 2885 (2008).

    Google Scholar 

  18. X.B. Ren, Y. Wang, Y. Zhou, Z. Zhang, D. Wang, G. Fan, K. Otsuka, T. Suzuki, Y. Ji, J. Zhang, Y. Tian, S. Hou, X. Ding, Philos. Mag. (2009), in press.

  19. P. Lloveras, T. Castán, M. Porta, A. Planes, A. Saxena, Phys. Rev. Lett. 100, 165707 (2008).

    Google Scholar 

  20. P. Lloveras, T. Castán, M. Porta, A. Planes, A. Saxena, Phys. Rev. B 80, 054107 (2009).

    Google Scholar 

  21. S. Kartha, T. Castán, J.A. Krumhansl, J.P. Sethna, Phys. Rev. Lett. 67, 3630 (1991).

    Google Scholar 

  22. S. Kartha , J.A. Krumhansl, J.P. Sethna, L.K. Wickham, Phys. Rev. B 52, 803 (1995).

    Google Scholar 

  23. S. Semenovskaya, A.G. Khachaturyan, Acta Mater. 45, 4367 (1997).

    Google Scholar 

  24. S. Semenovskaya, A.G. Khachaturyan, J. Appl. Phys. 83, 5125 (1998).

    Google Scholar 

  25. E.K.H. Salje, Phase Transitions in Ferroelastic and Co-Elastic Crystals (Cambridge University Press, Cambridge, 1990).

    Google Scholar 

  26. K. Otsuka, C.M. Wayman, Eds., Shape Memory Materials (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  27. A. Planes, L. Mañosa, Solid State Phys. 55, 159 (2001).

    Google Scholar 

  28. A. Saxena, T. Lookman, in Handbook of Materials Modeling, S. Yip, Ed. (Springer-Verlag, 2005), pp. 2143–2154.

    Google Scholar 

  29. S.R. Shenoy, T. Lookman, A. Saxena, A.R. Bishop, Phys. Rev. B 60, R12537 (1999); K.O. Rasmussen, T. Lookman, A. Saxena, A.R. Bishop, R.C. Albers, S.R. Shenoy, Phys. Rev. Lett. 87, 055704 (2001).

    Google Scholar 

  30. S.M. Shapiro, B.X. Yang, Y. Noda, L.E. Tanner, D. Schryvers, Phys. Rev. B 44, 9301 (1991).

    Google Scholar 

  31. W. Cai, Y. Murakami, K. Otsuka, Mater. Sci. Eng. A 275, 186 (1999).

    Google Scholar 

  32. T. Kakeshita, T. Fukuda, H. Tetsukawa, T. Saburi, K. Kindo, T. Takeuchi, M. Honda, S. Endo, T. Taniguchi, Y. Miyako, Jpn. J. Appl. Phys. 37, 2535 (1998).

    Google Scholar 

  33. K. Otsuka, X. Ren, Progr. Mater. Sci. 50, 511 (2005).

    Google Scholar 

  34. M.S. Choi, T. Fukuda, T. Kakeshita, H. Mori, Philos. Mag. 86, 67 (2006).

    Google Scholar 

  35. W. Petry, J. Phys. IV 5, C2–15 (1995).

    Google Scholar 

  36. J.S. Zhang, PhD thesis, University of Tsukuba, 2000.

  37. Y. Wang, PhD thesis, Xi’an Jiaotong University, 2008.

  38. V.K. Wadhawan, Introduction to Ferroic Materials (Gordon and Breach, Armsterdam, 2000).

    Google Scholar 

  39. D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, Phys. Rev. B 46, 8003 (1992).

    Google Scholar 

  40. J.A. Mydosh, Spin Glasses (Taylor & Francis, London, 1993).

    Google Scholar 

  41. G. Burns, F.H. Dacol, Phys. Rev. B 28, 2527 (1983).

    Google Scholar 

  42. Y. Murakami, D. Shindo, K. Oikawa, R. Kainuma, K. Ishida, Acta Mater. 50, 2173 (2002).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, X., Wang, Y., Otsuka, K. et al. Ferroelastic Nanostructures and Nanoscale Transitions: Ferroics with Point Defects. MRS Bulletin 34, 838–846 (2009). https://doi.org/10.1557/mrs2009.234

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.234

Navigation