Skip to main content
Log in

Nanoscale Heterogeneity in Functional Materials

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The physical properties that make “functional” materials worthy of their moniker frequently arise because of a phase transition that establishes a new kind of order as the material is cooled from a parent state. Such ordered states include ferroelectrics, ferromagnets, and structurally ordered martensites; because these states all break an orientational symmetry, and it is rare that one can produce the conditions for single domain crystallinity, the observed configuration is generally heterogeneous. However, the conditions under which domain structures form are highly constrained, especially by elastic interactions within a solid; consequently, the observed structures are far from fully random, even if disorder is present. Often the structure of the heterogeneity is important to the function, as in shape-memory alloys. Increasingly, we are surprised to discover new phases inside solids that are themselves a heterogeneous modulation of their parents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ahn, T. Lookman, A.R. Bishop, Nature 428, 401 (2004).

    Google Scholar 

  2. N. Mathur, P. Littlewood, Nat. Mater. 3, 207 (2004).

    Google Scholar 

  3. K. Bhattacharya, Microstructure of Martensite (Oxford University Press, Oxford, 2003).

    Google Scholar 

  4. E.K.H. Salje, Phase Transitions in Ferroelastic and Coelastic Solids (Cambridge University Press, Cambridge, 1990).

    Google Scholar 

  5. M. Porta, T. Castán, P. Lloveras, T. Lookman, A. Saxena, S.R. Shenoy, Phys. Rev. B 79, 214117 (2009).

    Google Scholar 

  6. P. Chandra, P.B. Littlewood, Topics in Applied Physics 105, 69–116 (2007).

    Google Scholar 

  7. J.M. Yeomans, Statistical Mechanics of Phase Transitions (Oxford University Press, Oxford, 1992).

    Google Scholar 

  8. K. Binder, D.W. Heermann, Monte Carlo Simulations in Statistical Physics (Springer, New York, 2007).

    Google Scholar 

  9. S.R. Shenoy, T. Lookman, Phys. Rev. B 78, 144103 (2008).

    Google Scholar 

  10. S. Sarkar, X. Ren, K. Otsuka, Phys. Rev. Lett. 95, 205702 (2005).

    Google Scholar 

  11. K.H. Fischer, J. Hertz, Spin Glasses (Cambridge University Press, Cambridge, 1991). D. Chowdhury, Spin Glasses and Other Frustrated Systems (World Scientific, Singapore, 1986).

    Google Scholar 

  12. T. Lookman, S.R. Shenoy, K.Ø. Rasmussen, A. Saxena, A.R. Bishop, Phys. Rev. B 67, 024114 (2003).

    Google Scholar 

  13. K.H. Ahn, T. Lookman, A. Saxena, A.R. Bishop, Phys. Rev. B 68, 092101 (2003).

    Google Scholar 

  14. L. Vasiliu-Doloc, S. Rosenkranz, R. Osborn, S.K. Sinha, J.W. Lynn, J. Mesot, O.H. Seeck, G. Preosti, A.J. Fedro, J.F. Mitchell, Phys. Rev. Lett. 83, 4393 (1999).

    Google Scholar 

  15. Z. Islam, X. Liu, S.K. Sinha, J.C. Lang, S.C. Moss, D. Haskel, G. Srajer, P. Wochner, D.R. Lee, D.R. Haeffner, U. Welp, Phys. Rev. Lett. 93157008 (2004).

  16. P. Maniadis, T. Lookman, A.R. Bishop, Phys. Rev. B 78, 134304 (2008).

    Google Scholar 

  17. K.H. Ahn, J-X. Zhu, Z. Nussinov, T. Lookman, A. Saxena, A.V. Balatsky, A.R. Bishop, J. Supercond. 17, 7–13 (2004).

    Google Scholar 

  18. B.S. Guiton, P.K. Davies, Nat. Mat. 6, 586 (2007).

    Google Scholar 

  19. S. Yeo, Y. Horibe, S. Mori, C.M. Tseng, C.H. Chen, A.G. Khachaturyan, C.L. Zhang, S.-W. Cheong, Appl. Phys. Lett. 89, 233120 (2006).

    Google Scholar 

  20. Y. Le Bouar, A. Loiseau, A.G. Khachaturyan, Acta Mater. 46, 2777 (1998).

    Google Scholar 

  21. T. Waitz, H.P. Karnthaler, Acta Mater. 52, 5461 (2004).

    Google Scholar 

  22. A.S. Kartha, T. Castán, J.A. Krumhansl, J.P. Sethna, Phys. Rev. Lett. 67, 3630 (1991).

    Google Scholar 

  23. Y. Wang, X. Ren, K. Otsuka, Materials Science Forum 583, 67 (2008).

    Google Scholar 

  24. X. Ren, Y. Wang, Y. Zhou, Z. Zhang, D. Wang, G. Fan, K. Otsuka, T. Suzuki, Y. Ji, J. Zhang, Y. Tian, S. Hou, X. Ding, Phil. Mag. (2009), in press.

  25. E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344, 1 (2001).

    Google Scholar 

  26. M.B. Salamon, M. Jaime, Rev. Mod. Phys. 73, 583 (2001).

    Google Scholar 

  27. G.C. Milward, M.J. Calderon, P.B. Littlewood, Nature 433, 607 (2005).

    Google Scholar 

  28. S.E. Rowley, L.J. Spalek, R.P. Smith, M.P.M. Dean, G.G. Lonzarich, J.F. Scott, S.S. Saxena, arXiv:0903.1445 (2009).

  29. G.S. Pawley, W. Cochran, R.A. Cowley, R.G. Dolling, Phys. Rev. Lett. 17, 753 (1966).

    Google Scholar 

  30. R. Jaramillo, Y. Feng, J.C. Lang, Z. Islam, G. Srajer, P.B. Littlewood, D.B. McWhan, T.F. Rosenbaum, Nature 459, 405 (2009).

    Google Scholar 

  31. L. Palova, P. Chandra, P. Coleman, Phys. Rev. B 79, 075101 (2009).

    Google Scholar 

  32. J.M. Perez-Mato, E.K.H. Salje, J. Phys. Condens. Matter 12, L29 (2000).

    Google Scholar 

  33. D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, M. Wuttig, Nat. Mater. 7, 972 (2008).

    Google Scholar 

  34. C. Manolikas, S. Amelinckx, Phys. Status Solidi A 60, 607 (1980).

    Google Scholar 

  35. C. Manolikas, S. Amelinckx, Phys. Status Solidi A 61, 179 (1980).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lookman, T., Littlewood, P. Nanoscale Heterogeneity in Functional Materials. MRS Bulletin 34, 822–831 (2009). https://doi.org/10.1557/mrs2009.232

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.232

Navigation