Skip to main content
Log in

Phase Transitions at the Nanoscale in Functional Materials

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Many properties of functional materials are quite different at the nanoscale, because at this length scale, the surface/interface energy becomes comparable to the bulk energy. Thus, the nature of various phase transitions at the nanoscale (e.g., structural, electronic, magnetic, metal-insulator) is altered. In addition, in functional materials with many coupled order parameters, quantum effects can dominate the response. We use the term nanoscale with three different context-specific connotations: it could refer to a cluster of atoms or molecules, a confined geometry as in a nanoscale grain or a superlattice, and a nanoscale region in the bulk. This field is still in its infancy, and much needs to be learned in terms of nucleation and thermodynamics at this scale. Materials of interest that we consider in this issue include, but are not limited to, ferroics (ferroelectrics, ferromagnets, ferroelastics), multiferroics (magnetoelectrics, ferrotoroidics), and complex functional materials such as those that exhibit colossal magnetoresistance and high-temperature superconductivity, including the recently discovered iron pnictide superconductors. Superconductors provide a fertile ground for quantum phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, Oxford, 1985).

    Google Scholar 

  2. K. Otsuka, C.M. Wayman, Shape Memory Materials (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  3. V.K. Wadhawan, Introduction to Ferroic Materials (Gordon and Breach, Amsterdam, 2000).

    Google Scholar 

  4. H. Schmid, Ferroelectrics 162, 317 (1994).

    Google Scholar 

  5. N. Mathur, P. Littlewood, Nat. Mater. 3, 207 (2004).

    Google Scholar 

  6. A.R. Bishop, J. Phys. Conf. Ser. 108, 12027 (2008).

    Google Scholar 

  7. H. Hosono, J. Phys. Soc. Jpn. 77 (Suppl. C), 1 (2008).

    Google Scholar 

  8. R.M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Cambridge, 2004).

    Google Scholar 

  9. A.R. Leach, Molecular Modeling: Principles and Applications (Addison Wesley Longman Ltd., Essex, 1996).

    Google Scholar 

  10. A. Saxena, T. Lookman, Handbook of Materials Modeling, S. Yip, Ed. (Springer Science BM, Dordrecht, 2005).

    Google Scholar 

  11. K.H. Ahn, T. Lookman, A.R. Bishop, Nature 428, 401 (2004).

    Google Scholar 

  12. M. Porta, T. Castan, P. Lloveras, T. Lookman, A. Saxena, S.R. Shenoy, Phys. Rev. B 79, 214117 (2009).

    Google Scholar 

  13. MRS Bull. 30 (6) (2005).

  14. S. Sarkar, X. Ren, K. Otsuka, Phys. Rev. Lett. 95, 205702 (2005).

    Google Scholar 

  15. G.A. Samara, J. Phys. Condens. Matter 15, R367 (2003).

    Google Scholar 

  16. J.A. Mydosh, Spin Glasses (Taylor & Francis, Philadelphia, 1993).

    Google Scholar 

  17. T. Waitz, Acta Mater. 53, 2273 (2005).

    Google Scholar 

  18. L.E. Tanner, D. Schryvers, S.M. Shapiro, Mater. Sci. Eng. A 127, 205 (1990).

    Google Scholar 

  19. Z. Xu, M.C. Kim, J.F. Li, D. Viehland, Philos. Mag. A 74, 395 (1996).

    Google Scholar 

  20. Y. Murakami, D. Shindo, K. Oikawa, R. Kainuma, K. Ishida, Acta Mater. 50, 2173 (2002).

    Google Scholar 

  21. C.H. Ahn, K.M. Rabe, J.-M. Triscone, Science 303, 488 (2004).

    Google Scholar 

  22. D.D. Fong, G.B. Stephenson, S.K. Streiffer, J.A. Eastman, O. Auciello, P.H. Fuoss, C. Thompson, Science 304, 1650 (2004).

    Google Scholar 

  23. J. Zhang, Z. Yin, M.-S. Zhang, J.F. Scott, Solid State Commun. 118, 241 (2001).

    Google Scholar 

  24. B. Mihailova, U. Bismayer, B. Guttler, M. Gospodinov, A. Boris, C. Berndhard, M. Aroyo, Z. Kristallogr. 220, 740 (2005).

    Google Scholar 

  25. W. Zhong, D. Vanderbilt, K.M. Rabe, Phys. Rev. B 52, 6301 (1995).

    Google Scholar 

  26. I.I. Naumov, L. Bellaiche, H. Fu, Nature 432, 737 (2004).

    Google Scholar 

  27. J. Cheon, J.-I Park, J.-S. Choi, Y.-W. Jun, S. Kim, M.G. Kim, Y.-M Kim, Y.J. Kim, Proc. Nat. Acad. Sci. U.S.A. 103, 3023 (2006).

    Google Scholar 

  28. C.A.F. Vaz, T.J. Hayward, J. Llandro, F. Schackert, D. Morecroft, J.A.C. Bland, M. Kläui, M. Laufenberg, D. Backes, U. Rüdiger, F.J. Castano, C.A. Ross, L.J. Heyderman, F. Nolting, A. Locatelli, G. Faini, S. Cherifi, W. Wernsdorfer, J. Phys. Condens. Matter 19, 255207 (2007).

    Google Scholar 

  29. V.I. Belotelov, V.A. Kotov, A.K. Zvezdin, Phase Trans. 79, 1135 (2006).

    Google Scholar 

  30. J. Akola, R.O. Jones, Phys. Rev. B 76, 235201 (2007); J. Phys. Condens. Matter 20, 465103 (2008).

    Google Scholar 

  31. M. Wuttig, N. Yamada, Nat. Mater. 6, 824 (2007).

    Google Scholar 

  32. S.-W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007).

    Google Scholar 

  33. N.A. Spaldin, M. Fiebig, M. Mostovoy, J. Phys. Condens. Matter 20, 434203 (2008).

    Google Scholar 

  34. B.B. Van Aken, J.P. Rivera, H. Schmid, M. Fiebig, Nature 449, 702 (2007).

    Google Scholar 

  35. MRS Bull. 33 (11) (2008).

  36. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

    Google Scholar 

  37. V.M. Vinokur, T.I. Baturina, M.V. Fistul, A.Y. Mironov, M.R. Baklanov, Nature 452, 613 (2008).

    Google Scholar 

  38. D. Gobert, U. Schollwock, J. Von Delft, Euro. Phys. J. B 38, 501 (2004).

    Google Scholar 

  39. J.G. Bednorz, K.A. Müller, Z. Phys. B: Condens. Matter 64, 189 (1986).

    Google Scholar 

  40. G. Aeppli, T.E. Mason, S.M. Hayden, H.A. Mook, J. Kulda, Science 278, 1432 (1997).

    Google Scholar 

  41. D.R. Harshman, G. Aeppli, B. Batlogg, G.P. Espinosa, R.J. Cava, A.S. Cooper, L.W. Rupp, E.J. Ansaldo, D.L. Williams, Phys. Rev. Lett. 63, 1187 (1989).

    Google Scholar 

  42. T. Hanaguri, C. Lupien, Y. Kohsaka, D.-H. Lee, M. Azuma, M. Takano, H. Takagi, J.C. Davis, Nature 430, 1001 (2004).

    Google Scholar 

  43. J. Zaanen, O. Gunnarsson, Phys. Rev. B 40, 7391 (1989).

    Google Scholar 

  44. S.A. Kivelson, E. Fradkin, V.J. Emery, Nature 393, 550 (1998).

    Google Scholar 

  45. J.C. Phillips, A. Saxena, A.R. Bishop, Rep. Prog. Phys. 66, 2111 (2003).

    Google Scholar 

  46. P.A. Midgley, S.M. Hayden, L. Taillefer, B. Bogenberger, H.V. Löhneysen, Phys. Rev. Lett. 70, 678 (1993).

    Google Scholar 

  47. G. Aeppli, D.J. Bishop, C. Broholm, E. Bucher, K. Siemensmeyer, N. Stusser, M. Steiner, Phys. Rev. Lett. 63, 676 (1989).

    Google Scholar 

  48. C. Broholm, J.K. Kjems, W.J. Buyers, P. Matthews, T.T. Palstra, A.A. Menovsky, J.A. Mydosh, Phys. Rev. Lett. 58, 1467 (1987).

    Google Scholar 

  49. J. Dai, Q. Si, J.-X. Zhu, E. Abrahams, Proc. Nat. Acad. Sci. 106, 4118 (2009).

    Google Scholar 

  50. D.B. Haviland, Y. Liu, A.M. Goldman, Phys. Rev. Lett. 62, 2180 (1989).

    Google Scholar 

  51. A.F. Hebard, M.A. Paalanen, Phys. Rev. Lett. 65, 927 (1990).

    Google Scholar 

  52. M.P.A. Fisher, Phys. Rev. Lett. 65, 923 (1990).

    Google Scholar 

  53. M.A. Steiner, N. Breznay, A. Kapitulnik, Phys. Rev. B 77, 212501 (2008).

    Google Scholar 

  54. C. Day, Phys. Today 62 (8), 36 (2009).

    Google Scholar 

  55. W.L. Padilla, D.N. Basov, D.R. Smith, Mater. Today 9 (July-August), 28 (2006).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saxena, A., Aeppli, G. Phase Transitions at the Nanoscale in Functional Materials. MRS Bulletin 34, 804–813 (2009). https://doi.org/10.1557/mrs2009.230

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.230

Navigation