Skip to main content
Log in

Electromechanics on the Nanometer Scale: Emerging Phenomena, Devices, and Applications

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Coupling between mechanical and electrical phenomena is ubiquitous at the nano-and molecular scales, with examples ranging from piezoelectricity and flexoelectricity in perovskites to complex molecular transformations in redox active molecules and ion channels. This article delineates the field of nanoelectromechanics enabled by recent advances in scanning probe, indentation, and interferometric techniques and provides a unified outlook at a number of related topics, including membrane and surface flexoelectricity, local piezoelectricity in ferroelectrics and associated devices, and electromechanical molecular machines. It also summarizes experimental and theoretical challenges on the pathway to visualize, control, and manipulate electromechanical activity on the nanoscale and molecular levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.V. Kalinin, B.J. Rodriguez, S. Jesse, B. Mirman, E. Karapetian, E.A. Eliseev, A.N. Morozovska, Annu. Rev. Mat. Sci. 37, 189 (2007).

    Google Scholar 

  2. S. Priya, D.J. Daniel, Eds., Energy Harvesting Technologies (Springer, New York, 2009).

    Google Scholar 

  3. D.L. Andrews, Ed., Energy Harvesting Materials (World Scientific, New Jersey, 2005).

    Google Scholar 

  4. E. Meyer, H.-J. Hug, R. Bennewitz, Eds., Scanning Probe Microscopy: The Lab on a Tip (Springer, New York, 2005).

    Google Scholar 

  5. A.K. Tagantsev, Phase Transitions 35, 119 (1981).

    Google Scholar 

  6. A. Gruverman, A.L. Kholkin, Rep. Progr. Phys. 69, 2443 (2006).

    Google Scholar 

  7. P.-C. Zhang, A.M. Keleshian, F. Sachs, Nature (London) 413, 428 (2001).

    Google Scholar 

  8. Q.M. Zhang, W.Y. Pan, L.E. Cross, J. Appl. Phys. 63, 2492 (1988); Q.M. Zhang, W.Y. Pan, L.E. Cross, J. Appl. Phys. 65, 2807 (1989).

    Google Scholar 

  9. A.N. Morozovska, S.L. Bravina, E.A. Eliseev, S.V. Kalinin, Phys. Rev. B 75, 174109 (2007).

    Google Scholar 

  10. K. Terabe, M. Nakamura, S. Takekawa, K. Kitamura, S. Higuchi, Y. Gotoh, Y. Cho, Appl. Phys. Lett. 82, 433 (2002).

    Google Scholar 

  11. B.J. Rodriguez, S.V. Kalinin, S. Jesse, Y.H. Chu, T. Zhao, R. Ramesh, E.A. Eliseev, A.N. Morozovska, Proc. Nat. Acad. Sci. 104, 20204 (2007).

    Google Scholar 

  12. S. Jesse, B.J. Rodriguez, A.P. Baddorf, I. Vrejoiu, D. Hesse, M. Alexe, E.A. Eliseev, A.N. Morozovska, S.V. Kalinin, Nat. Mater. 7, 209 (2008).

    Google Scholar 

  13. B.J. Rodriguez, A. Gruverman, A.I. Kingon, R.J. Nemanich, Appl. Phys. Lett. 80, 4166 (2002).

    Google Scholar 

  14. S.V. Kalinin, B.J. Rodriguez, S. Jesse, T. Thundat, A. Gruverman, Appl. Phys. Lett. 87, 053901 (2005).

    Google Scholar 

  15. A.C. Fischer-Cripps, Nanoindentation (Springer, New York, 2002).

    Google Scholar 

  16. M. Rief, M. Gautel, F. Oesterhelt, J.M. Fernandez, H.E. Gaub, Science 276, 1109 (1997).

    Google Scholar 

  17. B.C. Stipe, M.A. Rezaei, W. Ho, Science 279, 1907 (1998).

    Google Scholar 

  18. A. Rar, G.M. Pharr, W.C. Oliver, E. Karapetyan, S.V. Kalinin, J. Mater. Res. 21, 552 (2006).

    Google Scholar 

  19. W.C. Oliver, G.M. Pharr, J. Mater. Res. 19, 3 (2004).

    Google Scholar 

  20. J.-F. Li, P. Moses, D. Viehland, Rev. Sci. Instrum. 66, 215 (1995).

    Google Scholar 

  21. A.L. Kholkin, Ch. Wütchrich, D.V. Taylor, N. Setter, Rev. Sci. Instrum. 67, 1935 (1996).

    Google Scholar 

  22. A.L. Kholkin, E.L. Colla, A.K. Tagantsev, D.V. Taylor, N. Setter, Appl. Phys. Lett. 68, 2577 (1996).

    Google Scholar 

  23. A.L. Kholkin, K.G. Brooks, N. Setter, Appl. Phys. Lett. 71, 2044 (1997).

    Google Scholar 

  24. P. Muralt, A. Kholkin, M. Kohli, T. Maeder, Sens. Actuators, A 53, 398 (1996).

  25. A.L. Kholkin, Ferroelectrics 221, 219 (1999); A.L. Kholkin, Ferroelectrics 238, 235 (2000).

    Google Scholar 

  26. J.E. Graebner, B.P. Barber, P.L. Gammel, D.S. Greywall, Appl. Phys. Lett. 78, 159 (2001).

    Google Scholar 

  27. N. Vyshatko, P. Brioso, P. Vilarinho, A.L. Kholkin, Rev. Sci. Instrum. 76, 085101 (2005).

    Google Scholar 

  28. S.V. Kalinin, B.J. Rodriguez, S. Jesse, J. Shin, A.P. Baddorf, P. Gupta, H. Jain, D.B. Williams, A. Gruverman, Microscopy and Microanalysis 12, 1 (2006).

    Google Scholar 

  29. B.J. Rodriguez, R.J. Nemanich, A. Kingon, A. Gruverman, S.V. Kalinin, K. Terabe, X.Y. Liu, K. Kitamura, Appl. Phys. Lett. 86, 012906 (2005).

    Google Scholar 

  30. S.V. Kalinin, B.J. Rodriguez, S. Jesse, P. Maksymovych, K. Seal, M. Nikiforov, A.P. Baddorf, A.L. Kholkin, R. Proksch, Materials Today 11, 16 (2008).

    Google Scholar 

  31. S.V. Kalinin, B.J. Rodriguez, J. Shin, S. Jesse, V. Grichko, T. Thundat, A.P. Baddorf, A. Gruverman, Ultramicroscopy 106, 334 (2006).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalinin, S.V., Setter, N. & Kholkin, A.L. Electromechanics on the Nanometer Scale: Emerging Phenomena, Devices, and Applications. MRS Bulletin 34, 634–642 (2009). https://doi.org/10.1557/mrs2009.174

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.174

Navigation