Skip to main content
Log in

Modeling Amorphous Porous Materials and Confined Fluids

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Many of the porous materials used in laboratory and industrial processes do not have simple regular or crystalline structures. This greatly complicates efforts to characterize them and to understand and optimize their performance for particular applications. This review surveys recent efforts to use simulation and modeling to better understand the structure and performance of several classes of materials, including phase-separated glasses, sol-gel–derived materials, templated silica materials, and activated carbons. Approaches to modeling these materials fall generally into two classes: reconstructions, which generate models based on experimental measurements, and mimetic simulations, which attempt to model the preparation of the materials. While significant progress has been made in many respects, both reconstructive and mimetic transferred currently available are often computationally intensive and not easily transferable between different classes of materials. Finally, since gas adsorption is used widely as a characterization tool for amorphous porous materials and is often the focus of the materials’ application, recent developments in simulation and theory appropriate to the study of capillary phenomena in amorphous porous materials are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Brinker, G.W. Scherer, Sol-Gel Science (Academic Press, San Diego, 1990).

    Google Scholar 

  2. R. Schnabel, P. Langer, J. Chromatogr. 544, 137 (1991).

    Google Scholar 

  3. S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd edition (Academic Press, London, 1982).

    Google Scholar 

  4. F. Rouquerol, J. Rouquerol, K. Sing. Adsorption by Powders & Porous Solids (Academic Press, San Diego, 1999).

    Google Scholar 

  5. S.M. Auerbach, K.A. Carrado, P.K. Dutta, Eds., Handbook of Zeolite Science and Technology (Marcel Dekker, New York, 2003).

    Google Scholar 

  6. H. Marsh, F. Rodríguez Reinoso, Activated Carbon (Marcel Dekker, New York, 2005).

    Google Scholar 

  7. W. Haller, in Solid Phase Biochemistry, W.H. Scouten, Ed., (Wiley, New York, 1983), pp. 535–597.

    Google Scholar 

  8. A.G. Mayes, K. Mosbach, Trends Anal. Chem. 16 (6), 321 (1997).

    Google Scholar 

  9. S. Shelley, Chem. Eng. Progress 105 (1), 6 (2009).

    Google Scholar 

  10. R. Dronskowski, Computational Chemistry of Solid State Materials (Wiley-VCH Verlag, Weinheim, 2005).

    Google Scholar 

  11. E.E. Underwood, Quantitative Stereology (Addison-Wesley, MA, 1970).

    Google Scholar 

  12. S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Particle Technology Series (Springer, New York, 2006).

    Google Scholar 

  13. A.T. Brünger, M. Karplus, G.A. Petsko, Acta. Crystallogr. A 45, 50 (1989).

    Google Scholar 

  14. M.Y. Joshi, PhD thesis, University of Kansas, 1974.

  15. J.A. Quiblier, J. Colloid Interface Sci. 98 (1), 84 (1984).

    Google Scholar 

  16. A.P. Roberts. Phys. Rev. E 56 (3), 3203 (1997).

    Google Scholar 

  17. C.L.Y. Yeong, S. Torquato. Phys. Rev. E 57 (1), 495 (1998).

    Google Scholar 

  18. C.L.Y. Yeong, S. Torquato, Phys. Rev. E 58 (1), 224 (1998).

    Google Scholar 

  19. P. Levitz, Adv. Colloid Interface Sci. 76–77, 71 (1998).

    Google Scholar 

  20. M.G. Rozman, M. Utz, Phys. Rev. E 63, 066701 (2001).

    Google Scholar 

  21. S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer-Verlag, New York, 2001).

    Google Scholar 

  22. R. Salazar, L.D. Gelb, Langmuir 23, 530 (2007).

    Google Scholar 

  23. R.L. McGreevy, L. Pusztai, Mol. Simul. 1, 359 (1988).

    Google Scholar 

  24. D. Enke, F. Janowski, W. Schwieger, Microporous Mesoporous Mater. 60, 19 (2003).

    Google Scholar 

  25. H.P. Hood, M.E. Nordberg, U.S. Patent 2,106,744 (1938).

  26. W. Haller, Nature 206, 693 (1965).

    Google Scholar 

  27. P. Levitz, G. Ehret, S.K. Sinha, J.M. Drake, J. Chem. Phys. 95 (8), 6151 (1991).

    Google Scholar 

  28. D.P. Bentz, E.J. Garboczi, D.A. Quenard, Modell. Simul. Mater. Sci. Eng. 6 (3), 211 (1998).

    Google Scholar 

  29. R.J.M. Pellenq, B. Rousseau, P.E. Levitz, Phys. Chem. Chem. Phys. 3 (7), 1207 (2001).

    Google Scholar 

  30. E.S. Kikkinides, M.E. Kainourgiakis, K.L. Stefanopoulos, A.C. Mitropoulos, A.K. Stubos, N.K. Kanellopoulos, J. Chem. Phys. 112 (22), 9881 (2000).

    Google Scholar 

  31. E.S. Kikkinides, M.E. Kainourgiakis, A.K. Stubos, Langmuir 19, 3338 (2003).

    Google Scholar 

  32. K. Makrodimitris, G.K. Papadopoulos, C. Philippopoulos, D.N. Theodorou, J. Chem. Phys. 117 (12), 5876 (2002).

    Google Scholar 

  33. J.W. Cahn, J. Chem. Phys. 42 (1), 93 (1965).

    Google Scholar 

  34. L. Monette, G.S. Grest, M.P. Anderson, Phys. Rev. E 50 (5), 3361 (1994).

    Google Scholar 

  35. T. MacFarland, G.T. Barkema, J.F. Marko, Phys. Rev. B 53 (1), 148 (1996).

    Google Scholar 

  36. L.D. Gelb, K.E. Gubbins, Langmuir 14, 2097 (1998).

    Google Scholar 

  37. L.D. Gelb, K.E. Gubbins, Langmuir 15, 305 (1999).

    Google Scholar 

  38. T.H. Elmer, in ASM Engineered Materials Handbook, S.J. Schneider, Jr., Ed. (ASM, Materials Park, OH, 1991), vol. 4, pp. 427–432.

    Google Scholar 

  39. X. Lu, O. Nilsson, J. Fricke, R.W. Pekala, J. Appl. Phys. 73, 581 (1993).

    Google Scholar 

  40. P. Meakin, Phys. Rev. Lett. 51 (13), 1119 (1983).

    Google Scholar 

  41. A. Hasmy, M. Foret, J. Pelous, R. Jullien, Phys. Rev. B 48, 9345 (1993).

    Google Scholar 

  42. T.M. Haard, G. Gervais, R. Nomura, W.P. Halperin, Phys. B 284–288, 289 (2000).

    Google Scholar 

  43. F. Pierce, C.M. Sorensen, A. Chakrabarti, Phys. Rev. E 74, 021411 (2006).

    Google Scholar 

  44. A. Hasmy, É. Anglaret, M. Foret, J. Pelous, R. Jullien, Phys. Rev. B 50, 6006–6016 (1994).

    Google Scholar 

  45. P. Meakin, Ann. Rev. Phys. Chem. 39, 237 (1988).

    Google Scholar 

  46. P. Meakin, R. Jullien, J. Chem. Phys. 89 (1), 246 (1988).

    Google Scholar 

  47. R. Jullien, A. Hasmy, É. Anglaret, J. Sol-Gel Sci. Technol. 8, 819 (1997).

    Google Scholar 

  48. L.D. Gelb, J. Phys. Chem. C 111, 15792 (2007).

    Google Scholar 

  49. B.P. Feuston, S.H. Garofalini, J. Phys. Chem. 94, 5351 (1990).

    Google Scholar 

  50. S.H. Garofalini, G. Martin, J. Phys. Chem. 98, 1311 (1994).

    Google Scholar 

  51. K. Yamahara, K. Okazaki, Fluid Phase Eq. 144, 449 (1998).

    Google Scholar 

  52. N.Z. Rao, L.D. Gelb, J. Phys. Chem. B 108, 12418 (2004).

    Google Scholar 

  53. S. Bhattacharya, J. Kieffer, J. Chem. Phys. 122, 094715 (2005).

    Google Scholar 

  54. S. Bhattacharya, J. Kieffer, J. Phys. Chem. C 112, 1764 (2008).

    Google Scholar 

  55. P.I. Pohl, J.-L. Faulon, D.M. Smith, J. Non-Cryst. Solids 186, 349 (1995).

    Google Scholar 

  56. J.M.D. MacElroy, K. Raghavan, J. Chem. Phys. 93 (3), 2068 (1990).

    Google Scholar 

  57. R.D. Kaminsky, J. Chem. Phys. 95 (4), 2936 (1991).

    Google Scholar 

  58. L.D. Gelb, K.E. Gubbins, R. Radhakrishnan, M. Sliwinska-Bartkowiak, Rep. Prog. Phys. 62 (12), 1573 (1999).

    Google Scholar 

  59. P.R. Van Tassel, Encyclopedia of Surface and Colloid Science (Taylor & Francis, 2006), pp. 271–278.

    Google Scholar 

  60. J. Quintanilla, R.F. Reidy, B.P. Gorman, D.W. Mueller, J. Appl. Phys. 93 (8), 4584 (2003).

    Google Scholar 

  61. N. Eschricht, E. Hoinkis, F. Mädler, P. Schubert-Bischoff, B. Röhl-Kuhn, J. Colloid Interface Sci. 291, 201 (2005).

    Google Scholar 

  62. Th. Steriotis, E. Kikkinides, M. Kainourgiakis, A. Stubos, J.D.F. Ramsay, Colloids Surf. A 241, 231 (2004).

    Google Scholar 

  63. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgens, J.L. Schlenker, J. Am. Chem. Soc. 114 (27), 10834 (1992).

    Google Scholar 

  64. T.J. Barton, L.M. Bull, W.G. Klemperer, D.A. Loy, B. McEnaney, M. Misono, P.A. Monson, G. Pez, G.W. Scherer, J.C. Vartuli, O.M. Yaghi, Chem. Mater. 11, 2633 (1999).

    Google Scholar 

  65. G.J. de A.A. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin, Chem. Rev. 102, 4093 (2002).

    Google Scholar 

  66. Y. Wan, D. Zhao, Chem. Rev. 107 (7), 2821 (2007).

    Google Scholar 

  67. B.P. Feuston, J.B. Higgins, J. Phys. Chem. 98, 4459 (1994).

    Google Scholar 

  68. Y. Oumi, K. Azuma, T. Ikeda, S. Sasaki, T. Santo, Studies in Surf. Sci. Catal. 141, 69–76 (2002).

    Google Scholar 

  69. C.G. Sonwane, C.W. Jones, P.J. Ludovice, J. Phys. Chem. B 109 (49), 23395 (2005).

    Google Scholar 

  70. K. Kleestorfer, H. Vinek, A. Jentys, J. Mol. Catal. A 166, 53 (2001).

    Google Scholar 

  71. A.J. Palace Carvalho, T. Ferreira, A.J. Estêvão Candeias, J.P. Prates Ramalho, Theochem 729, 65 (2005).

    Google Scholar 

  72. F.R. Siperstein, K.E. Gubbins, Mol. Simul. 27, 339 (2001).

    Google Scholar 

  73. B. Coasne, F.R. Hung, R.J.-M. Pellenq, F.R. Siperstein, K.E. Gubbins, Langmuir 22, 194 (2006).

    Google Scholar 

  74. F.R. Hung, S. Bhattacharya, B. Coasne, M. Thommes, K.E. Gubbins, Adsorption 13, 425 (2007).

    Google Scholar 

  75. C. Schumacher, J. Gonzalez, P.A. Wright, N.A. Seaton, J. Phys. Chem. B 110 (1), 319 (2006).

    Google Scholar 

  76. T.J. Bandosz, M.J. Biggs, K.E. Gubbins, Y. Hattori, T. Iiyama, K. Kaneko, J. Pikunic, K.T. Thomson, Chemistry and Physics of Carbon (Marcel Dekker, New York, 2003).

    Google Scholar 

  77. M.J. Biggs, A. Buts, Mol. Simul. 32 (7), 579 (2006).

    Google Scholar 

  78. B. O’Malley, I. Snook, D. McCulloch, Phys. Rev. B 57 (22), 14148 (1998).

    Google Scholar 

  79. J.S. Rigden, R.J. Newport, J. Electrochem. Soc. 143 (1), 292 (1996).

    Google Scholar 

  80. J.L. Faulon, G.A. Carlson, P.G. Hatcher, Energy Fuels 7, 1062 (1993).

    Google Scholar 

  81. M. Acharya, M.S. Strano, J.P. Mathews, J.L. Billings, V. Petkov, S. Subramoney, H.C. Foley, Philos. Mag. B 79, 1499 (1999).

    Google Scholar 

  82. K.T. Thomson, K.E. Gubbins, Langmuir 16, 5761 (2000).

    Google Scholar 

  83. J. Pikunic, C. Clinard, N. Cohaut, K.E. Gubbins, J.-M. Guet, R.J.-M. Pellenq, I. Rannou, J.-N. Rouzaud, Langmuir 19, 8565 (2003).

    Google Scholar 

  84. P. Zetterström, S. Urbonaite, F. Lindberg, R.G. Delaplane, J. Leis, G. Svensson, J. Phys.: Condens. Matter 17, 3509 (2005).

    Google Scholar 

  85. T. Petersen, I. Yarovsky, I. Snook, D.G. McCulloch, G. Opletal, Carbon 42, 2457 (2004).

    Google Scholar 

  86. S.K. Jain, R.J.-M. Pellenq, J.P. Pikunic, K.E. Gubbins, Langmuir 22, 9942 (2006).

    Google Scholar 

  87. M.J. Biggs, A. Buts, D. Williamson, Langmuir 20, 5786 (2004).

    Google Scholar 

  88. A. Kumar, R.F. Lobo, N.J. Wagner, Carbon 43, 3099 (2005).

    Google Scholar 

  89. Y. Shi, J. Chem. Phys. 128, 234707 (2008).

    Google Scholar 

  90. D. Nicholson, N.G. Parsonage, Computer Simulation and the Statistical Mechanics of Adsorption (Academic Press, London, 1982).

    Google Scholar 

  91. L.D. Gelb, Mol. Phys. 100 (13), 2049 (2002).

    Google Scholar 

  92. L.D. Gelb, K.E. Gubbins, in Fundamentals of Adsorption 7, K. Kaneko, Ed. (Elsevier, Paris, 2001), pp. 333–339.

    Google Scholar 

  93. R. Evans, U. Marini Bettolo Marconi, P. Tarazona, J. Chem. Phys. 84 (4), 2376 (1986).

    Google Scholar 

  94. P.I. Ravikovitch, G.L. Haller, A.V. Neimark, Adv. Colloid Interface Sci. 76–77, 203 (1998).

    Google Scholar 

  95. L.J. Douglas Frink, A.G. Salinger, J. Chem. Phys. 118 (16), 7466 (2003).

    Google Scholar 

  96. E.A. Ustinov, D.D. Do, J. Chem. Phys. 120, 9769 (2004).

    Google Scholar 

  97. D.W. Siderius, L.D. Gelb, Langmuir 25, 1296 (2009).

    Google Scholar 

  98. E. Kierlik, P.A. Monson, M.L. Rosinberg, L. Sarkisov, G. Tarjus, Phys. Rev. Lett. 87, 055701 (2001).

    Google Scholar 

  99. E. Kierlik, M.L. Rosinberg, G. Tarjus, P. Viot, Phys. Chem. Chem. Phys. 3, 1201 (2001).

    Google Scholar 

  100. M.J. De Oliveira, R.B. Griffiths, Surf. Sci. 71, 687 (1978).

    Google Scholar 

  101. H.-J. Woo, L. Sarkisov, P.A. Monson, Langmuir 17, 7472 (2001).

    Google Scholar 

  102. F. Detcheverry, E. Kierlik, M.L. Rosinberg, G. Tarjus, Phys. Rev. E 68, 061504 (2003).

    Google Scholar 

  103. R. Salazar, L.D. Gelb, Phys. Rev. E 71 041502 (2005).

    Google Scholar 

  104. L.D. Gelb, R. Salazar, Adsorption, 11 283 (2005).

    Google Scholar 

  105. P.A. Monson, J. Chem. Phys. 128, 084701 (2008).

    Google Scholar 

  106. R. Salazar, L.D. Gelb, Mol. Phys. 102 (9–10), 1015 (2004).

    Google Scholar 

  107. M. Bonijoly, M. Oberlin, A. Oberlin, Int. J. Coal Geol. 1 (4), 283 (1982).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelb, L.D. Modeling Amorphous Porous Materials and Confined Fluids. MRS Bulletin 34, 592–601 (2009). https://doi.org/10.1557/mrs2009.159

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.159

Navigation