Skip to main content
Log in

Meso- and Macroporous Ceramics by Phase Separation and Reactive Sintering Methods

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Controlled pore glasses are formed through selective etching of one phase of a spinodally decomposed borosilicate glass, an old technique that is the basis of the porous Vycor synthesis technique developed in the 1920s. This technique is receiving renewed attention as these glasses find new applications as substrates for biosensing, bioreactors, precise filtration, and chromatography. Analogous techniques are being applied to crystalline ceramics, such as directed cooling of ZrO2/MgO and MgAl2O4/Al2O3 eutectics to drive phase separation with the subsequent dissolution of one phase. Pyrolytic reactive sintering is a combination of the phase separation method and the reactive sintering method to obtain a 3D porous structure network. For example, dolomite (CaMg[CO3]2) and ZrO2 yield a uniformly porous CaZrO3/MgO composite that utilizes evolved CO2 as a “pore-forming agent.” This article gives an overview of recent developments on meso- and macroporous ceramics based on phase separation and reactive sintering technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Enke, F. Janowski, W. Schwieger, Microporous Mesoporous Mater. 60, 19 (2003).

    Google Scholar 

  2. K. Nakanishi, J. Porous Mater. 4, 67 (1997).

    Google Scholar 

  3. X.M. Li, X.W. Yin, L.T. Zhang, L.F. Cheng, Y.C. Qi, Mater. Sci. Eng. A. 500, 63 (2009).

    Google Scholar 

  4. Y. Suzuki, P.E.D. Morgan, T. Ohji, J. Am. Ceram. Soc. 83, 2091 (2000).

    Google Scholar 

  5. G.E. Thompson, Thin Solid Films 297, 192 (1997).

    Google Scholar 

  6. L. Chen, X. Peng, Y. Huang, L. Li, X. Li, Key Eng. Mater. 368–372, 697 (2008).

    Google Scholar 

  7. F.Q. Tang, H. Fudouzi, T. Uchikoshi, Y. Sakka, J. Eur. Ceram. Soc. 24, 341 (2004).

    Google Scholar 

  8. C. Bosch Ojeda, F. Sánchez Rojas, J.M. Cano Pavón, Spectroscopy Lett. 41, 204 (2008).

    Google Scholar 

  9. T. Kojima, T. Fukai, N. Uekawa, K. Kakegawa, J. Ceram. Soc. Jpn. 116, 1241 (2008).

    Google Scholar 

  10. W. Wang, S. Kirihara, Y. Miyamoto, Z. Jiny, J. Am. Ceram. Soc. 91, 1194 (2008).

    Google Scholar 

  11. L.D. Gelb, K.E. Gubbins, Langmuir 14, 2097 (1998).

    Google Scholar 

  12. A.F. Martin, T.A. Nieman, Analytica Chimica Acta 281, 475 (1993).

    Google Scholar 

  13. M.P. Xavier, B. Vallejo, M.D. Marazuela, M.C. Moreno-Bondi, F. Baldini, A. Falai, Biosens. Bioelectronics 14, 895 (2000).

    Google Scholar 

  14. P. Mulchandani, W. Chen, A. Mulchandani, Environmental Sci. Tech. 35, 2562 (2001).

    Google Scholar 

  15. A.M. Girelli, E. Mattei, A. Messina, D. Papaleo, Sens. Actuators, B 125, 48 (2007).

    Google Scholar 

  16. A.M. Azevedo, J.M.S. Cabral, T.D. Gibson, L.P. Fonseca, J. Molecular Catal. B 28, 45 (2004).

    Google Scholar 

  17. D. Zadaka, Y.G. Mishael, T. Polubesova, C. Serban, S. Nir, Applied Clay Sci. 36, 174 (2007).

    Google Scholar 

  18. W.B. Huttner, W. Schiebler, P. Greengard, P. De Camilli, J. Cell Biology. 96, 1374 (1983).

    Google Scholar 

  19. S. Deville, Adv. Eng. Mater. 10, 155 (2008).

    Google Scholar 

  20. S. Kondoh, Y. Iwamoto, K. Kikuta, S. Hirano, J. Am. Ceram. Soc. 82, 209 (1999).

    Google Scholar 

  21. J. Otomo, S.Q. Wang, H. Takahashi, H. Nagamoto, J. Membrane Sci. 279, 256 (2006).

    Google Scholar 

  22. J. Otomo, R. Kurokawa, H. Takahashia, H. Nagamoto, Vacuum 81, 1003 (2007).

    Google Scholar 

  23. S.C. Zhang, C. Zhang, H.P. Yang, Y.F. Zhu, J. Solid State Chem. 179, 873 (2006).

    Google Scholar 

  24. Y. Suzuki, T. Yamada, S. Sakakibara, T. Ohji, Ceram. Eng. Sci. Proc. 21[4], 19 (2000).

    Google Scholar 

  25. S. Ueno, M. Awano, D.D. Jayaseelan, N. Kondo, T. Ohji, S. Kanzaki, J. Ceram. Soc. Jpn. 111, 611 (2003).

    Google Scholar 

  26. J.H. Lee, A. Yoshikawa, T. Fukuda, J. Eur. Ceram. Soc. 25, 1351 (2005).

    Google Scholar 

  27. Y. Waku, N. Nakagawa, H. Ohtsubo, Y. Ohsora, Y. Kohtoku, J. Jpn. Inst. Metals 59, 71 (1995).

    Google Scholar 

  28. Y. Waku, N. Nakagawa, T. Wakamoto, H. Ohtsubo, K. Shimizu, Y. Kohtoku, Nature 389, 49 (1997).

    Google Scholar 

  29. H. Nakajima, S.K. Hyun, K. Ohashi, K. Ota, K. Murakami, Colloids Surf. A 179, 209 (2001).

    Google Scholar 

  30. H. Nakajima, T. Ikeda, S.K. Hyun, Adv. Eng. Mater. 6, 377 (2004).

    Google Scholar 

  31. S. Ueno, L.M. Lin, S.K. Hyun, H. Nakajima, Mater. Trans. 47, 2167 (2006).

    Google Scholar 

  32. S. Ueno, L.M. Lin, H. Nakajima, J. Am. Ceram. Soc. 91, 223 (2008).

    Google Scholar 

  33. T. Fukasawa, M. Ando, T. Ohji, S. Kanzaki, J. Am. Ceram. Soc. 84, 230 (2001).

    Google Scholar 

  34. T. Fukasawa, Z.Y. Deng, M. Ando, T. Ohji, J. Ceram. Soc. Jpn. 109, 1035 (2001).

    Google Scholar 

  35. T. Fukasawa, Z.Y. Deng, M. Ando, T. Ohji, S. Kanzaki, J. Am. Ceram. Soc. 85, 2151 (2002).

    Google Scholar 

  36. Y. Suzuki, M. Awano, N. Kondo, T. Ohji, J. Ceram. Soc. Jpn. 109, 79 (2001).

    Google Scholar 

  37. Y. Suzuki, N. Kondo, T. Ohji, J. Ceram. Soc. Jpn. 109, 205 (2001).

    Google Scholar 

  38. Y. Suzuki, N. Kondo, T. Ohji, J. Am. Ceram. Soc. 86, 1128 (2003).

    Google Scholar 

  39. Y. Suzuki, N. Kondo, T. Ohji, P.E.D. Morgan, Int. J. Appl. Ceram. Tech. 1, 76 (2004).

    Google Scholar 

  40. Y. Suzuki, M. Tsukatsune, S. Yoshikawa, P.E.D. Morgan, J. Am. Ceram. Soc. 88, 3283 (2005).

    Google Scholar 

  41. S. Serena, A. Caballero, M.A. Sainz, P. Conver, J. Campo, X. Turrillas, J. Am. Ceram. Soc. 87, 1706 (2004).

    Google Scholar 

  42. S. Serena, M.A. Sainz, A. Caballero, J. Am. Ceram. Soc. 87, 2268 (2004).

    Google Scholar 

  43. M. Rajamathi, S. Thimmaiah, P.E.D. Morgan, R. Seshadri, J. Mater. Chem. 11, 2489 (2001).

    Google Scholar 

  44. M. Panda, M. Rajamathi, R. Seshadri, Chem. Mater. 14, 4762 (2002).

    Google Scholar 

  45. H. Morioka, H. Tagaya, M. Karasu, J. Kadokawa, K. Chiba, Inorg. Chem. 38, 4211 (1999).

    Google Scholar 

  46. E.S. Toberer, J.C. Weaver, K. Ramesha, R. Seshadri, Chem. Mater. 16, 2194 (2004).

    Google Scholar 

  47. E.S. Toberer, A. Joshi, R. Seshadri, Chem. Mater. 17, 2142 (2005).

    Google Scholar 

  48. X.W. Zhu, Y. Zhou, K. Hirao, J. Am. Ceram. Soc. 88, 1353 (2005).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, Y., Morgan, P.E.D. Meso- and Macroporous Ceramics by Phase Separation and Reactive Sintering Methods. MRS Bulletin 34, 587–591 (2009). https://doi.org/10.1557/mrs2009.158

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.158

Navigation