Skip to main content
Log in

Nanoporous Metals for Catalytic and Optical Applications

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Nanoporous metals (NPMs) made by dealloying represent a class of functional materials with the unique structural properties of mechanical rigidity, electrical conductivity, and high corrosion resistance. They also possess a porous network structure with feature dimensions tunable within a wide range from a few nanometers to several microns. Coupled with a rich surface chemistry for further functionalization, NPMs have great potential for applications in heterogeneous catalysis, electrocatalysis, fuel cell technologies, biomolecular sensing, surface-enhanced Raman scattering (SERS), and plasmonics. This article summarizes recent advances in some of these areas and, in particular, we focus on the discussion of microstructure, catalytic, and optical properties of nanoporous gold (NPG). With advanced electron microscopy, three-dimensional tomographic reconstructions of NPG have been realized that yield quantitative characterizations of key morphological parameters involved in the intricate structure. Catalytic and electrocatalytic investigations demonstrate that bare NPG is already catalytically active for many important reactions such as CO and glucose oxidation. Surface functionalization with other metals, such as Pt, produces very efficient electrocatalysts, which have been used as promising fuel cell electrode materials with very low precious metal loading. Additionally, NPG and related materials possess outstanding optical properties in plasmonics and SERS. They hold promise to act as highly active, stable, and economically affordable substrates in high-performance instrumentation applications for chemical inspection and biomolecular diagnostics. Finally, we conclude with some perspectives that appear to warrant future investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Polarz, B. Smarsly, J. Nanosci. Nanotechnol. 2, 581 (2002).

    Google Scholar 

  2. Y. Xia, Adv. Mater. 13, 369 (2001).

    Google Scholar 

  3. R.C. Newman, K. Sieradzki, MRS Bull. 24, 12 (1999).

    Google Scholar 

  4. M. Raney, U.S. Patent 1,628,190 (1927).

  5. G.W. Huber, J.W. Shabaker, J.A. Dumesic, Science 300, 2075 (2003).

    Google Scholar 

  6. H.W. Pickering, P.R. Swann, Corrosion 19, 373 (1963).

    Google Scholar 

  7. P.R. Swann, Corrosion 25, 147 (1969).

    Google Scholar 

  8. A.J. Forty, Nature 282, 597 (1979).

    Google Scholar 

  9. K. Sieradzki, R.C. Newman, U.S. Patent 4,977,038 (1990).

  10. I.C. Oppenheim, D.J. Trevor, C.E.D. Chidsey, P.L. Trevor, K. Sieradzki, Science 254, 687 (1991).

    Google Scholar 

  11. S.G. Corcoran, K. Sieradzki, D. Wiesler, Mater. Res. Soc. Symp. Proc. 451, 93 (1997).

    Google Scholar 

  12. D.V. Pugh, A. Dursun, S.G. Corcoran, J. Mater. Res. 18, 216 (2003).

    Google Scholar 

  13. M.B. Cortie, A.I. Maaroof, G.B. Smith, Gold Bull. 38, 14 (2005).

    Google Scholar 

  14. J. Yoon, M.H.W. Chan, Phys. Rev. Lett. 78, 4801 (1997).

    Google Scholar 

  15. E. Van Der Lingen, M.B. Cortie, L. Glaner, South African Patent 2001/5816 (2001).

  16. J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Nature 410, 450 (2001).

    Google Scholar 

  17. Y. Ding, J. Erlebacher, J. Am. Chem. Soc. 125, 7772 (2003).

    Google Scholar 

  18. Y. Ding, M.W. Chen, J. Erlebacher, J. Am. Chem. Soc. 126, 6876 (2004).

    Google Scholar 

  19. Y. Ding, Y.J. Kim, J. Erlebacher, Adv. Mater. 16, 1897 (2004).

    Google Scholar 

  20. Y. Ding, A. Mathur, M.W. Chen, J. Erlebacher, Angew. Chem. Int. Ed. 44, 4002 (2005).

    Google Scholar 

  21. J. Biener, A.M. Hodge, J.R Hayes, C.A. Volkert, L.A. Zepeda-Ruiz, A.V. Hamza, F.F. Abraham, Nano Lett. 6, 2379 (2006).

    Google Scholar 

  22. C. Xu, J. Su, X. Xu, P. Liu, H. Zhao, F. Tian, Y. Ding, J. Am. Chem. Soc. 129, 42 (2007).

    Google Scholar 

  23. X. Ge, R. Wang, S. Cui, F. Tian, L. Xu, Y. Ding, Electrochem. Commun. 10, 1494 (2008).

    Google Scholar 

  24. G.B. Smith, A.I. Maaroof, A. Gentle, Opt. Commun. 271, 263 (2007).

    Google Scholar 

  25. M.C. Dixon, T.A. Daniel, M. Hieda, D.M. Smilgies, M.H.W. Chan, D.L. Allara, Langmuir 23, 2414 (2007).

    Google Scholar 

  26. L.H. Qian, X.Q. Yan, T. Fujita, M.W. Chen, Appl. Phys. Lett. 90, 153120 (2007).

    Google Scholar 

  27. T. Fujita, H. Okada, K. Koyama, K. Watanabe, S. Maekawa, M.W. Chen, Phys. Rev. Lett. 101, 166601 (2008).

    Google Scholar 

  28. O.V. Shulga, K. Jefferson, A.R. Khan, V.T. D’Souza, J. Liu, A.V. Demchenko, K.J. Stine, Chem. Mater. 19, 3902 (2007).

    Google Scholar 

  29. K. Hu, D. Lan, X. Li, S. Zhang, Anal. Chem. 80, 9124 (2008).

    Google Scholar 

  30. T. Fujita, M.W. Chen, Jpn. J. Appl. Phys. 47, 1161 (2008).

    Google Scholar 

  31. S. Parida, D. Kramer, C.A. Volkert, H. Rösner, J. Erlebacher, J. Weissmüller, Phys. Rev. Lett. 97, 035504 (2006).

    Google Scholar 

  32. L.H. Qian, M.W. Chen, Appl. Phys. Lett. 91, 083105 (2007).

    Google Scholar 

  33. L.H. Qian, A. Inoue, M.W. Chen, Appl. Phys. Lett. 92, 093113 (2008).

    Google Scholar 

  34. H. Rösner, S. Parida, D. Kramer, C.A. Volkert, J. Weissmüller, Adv. Eng. Mater. 9, 535 (2007).

    Google Scholar 

  35. T. Fujita, L.H. Qian, K. Inoke, J. Erlebacher, M.W. Chen, Appl. Phys. Lett. 92, 251902 (2008).

    Google Scholar 

  36. M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett. 16, 405 (1987).

    Google Scholar 

  37. M. Haruta, Nature 437, 1098 (2005).

    Google Scholar 

  38. C. Lemire, R. Meyer, S. Shaikhutdino, H.J. Freund, Angew. Chem. Int. Ed. 43, 118 (2004).

    Google Scholar 

  39. L.M. Molina, B. Hammer, Phys. Rev. Lett. 90, 206102 (2003).

    Google Scholar 

  40. Y. Iizuka, A. Kawamoto, K. Akita, M. Date, S. Tsubota, M. Okumura, M. Haruta, Catal. Lett. 97, 203 (2004).

    Google Scholar 

  41. M.A. Sanchez-Castillo, C. Couto, W.B. Kim, J.A. Dumesic, Angew. Chem. Int. Ed. 43, 1140 (2004).

    Google Scholar 

  42. V. Zielasek, B. Jürgens, C. Schulz, J. Biener, M.M. Biener, A.V. Hamza, M. Bäumer, Angew. Chem. Int. Ed. 45, 8241 (2006).

    Google Scholar 

  43. C. Xu, X. Xu, J. Su, Y. Ding, J. Catal. 252, 243 (2007).

    Google Scholar 

  44. M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon, J. Catal. 144, 175 (1993).

    Google Scholar 

  45. A. Wittstock, B. Neumann, A. Schaefer, K. Dumbuya, C. Kübel, M.M. Biener, V. Zielasek, H.-P. Steinrück, J.M. Gottfried, J. Biener, A. Hamza, M. Bäumer, J. Phys. Chem. C 11 3, 5593 (2009).

    Google Scholar 

  46. S. Kameoka, A.P. Tsai, Catal. Lett. 121, 337 (2008).

    Google Scholar 

  47. R. Zeis, T. Lei, K. Sieradzki, J. Snyder, J. Erlebacher, J. Catal. 253, 132 (2008).

    Google Scholar 

  48. H. Falsig, B. Hvolbaek, I.S. Kristensen, T. Jiang, T. Bligaard, C.H. Christensen, J.K. Norskov, Angew. Chem. Int. Ed. 47, 4835 (2008).

    Google Scholar 

  49. H. Yin, C. Zhou, C. Xu, P. Liu, X. Xu, Y. Ding, J. Phys. Chem. C 112, 9673 (2008).

    Google Scholar 

  50. J. Zhang, P. Liu, H. Ma, Y. Ding, J. Phys. Chem. C 111, 10382 (2007).

    Google Scholar 

  51. C. Yu, F. Jia, Z. Ai, L. Zhang, Chem. Mater. 19, 6065 (2007).

    Google Scholar 

  52. X. Ge, R. Wang, P. Liu, Y. Ding, Chem. Mater. 19, 5827 (2007).

    Google Scholar 

  53. J. Zhang, H. Ma, D. Zhang, P. Liu, F. Tian, Y. Ding, Phys. Chem. Chem. Phys. 10, 3250 (2008).

    Google Scholar 

  54. P. Liu, X. Ge, R. Wang, H. Ma, Y. Ding, Langmuir 25, 561 (2009).

    Google Scholar 

  55. R. Zeis, A. Mathur, G. Fritz, J. Lee, J. Erlebacher, J. Power Sources 165, 65 (2007).

    Google Scholar 

  56. A. Mathur, J. Erlebacher, Surf. Sci. 602, 2863 (2008).

    Google Scholar 

  57. F. Yu, S. Ahl, A.M. Caminade, J.P. Majoral, W. Knoll, J. Erlbacher, Anal. Chem. 78, 7346 (2006).

    Google Scholar 

  58. L.H. Qian, Y. Ding, T. Fujita, M.W. Chen, Langmuir 24, 4426 (2008).

    Google Scholar 

  59. H.M. Bok, K.L. Shuford, S. Kim, S.K. Kim, S. Park, Nano Lett. 8, 2265 (2008).

    Google Scholar 

  60. J.S. Biteen, D. Pacifici, N.B. Lewis, H.A. Atwater, Nano Lett. 5, 1768 (2005).

    Google Scholar 

  61. S.O. Kucheyev, J.R. Hayes, J. Biener, T. Huser, C.E. Talley, A.V. Hamza, Appl. Phys. Lett. 89, 53102 (2006).

    Google Scholar 

  62. L.Y. Chen, J.S. Yu, T. Fujita, M.W. Chen, Adv. Funct. Mater. 19, 1221 (2009).

    Google Scholar 

  63. X.Y. Lang, L.Y. Chen, P.F. Guan, T. Fujita, M.W. Chen, Appl. Phys. Lett. 94, 213109 (2009).

    Google Scholar 

  64. J. Yu, Y. Ding, C. Xu, A. Inoue, T. Sakurai, M.W. Chen, Chem. Mater. 20, 4548 (2008).

    Google Scholar 

  65. J. Snyder, P. Asanithi, A.B. Dalton, J. Erlebacher, Adv. Mater. 20, 4483 (2008).

    Google Scholar 

  66. J.F. Huang, I.W. Sun, Chem. Mater. 16, 1829 (2004).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Y., Chen, M. Nanoporous Metals for Catalytic and Optical Applications. MRS Bulletin 34, 569–576 (2009). https://doi.org/10.1557/mrs2009.156

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.156

Navigation