Skip to main content
Log in

Compound Semiconductors for Low-Power p-Channel Field-Effect Transistors

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Research in n-channel field-effect transistors based upon III–V compound semiconductors has been very productive over the last 30 years, with successful applications in a variety of high-speed analog circuits. For digital applications, complementary circuits are desirable to minimize static power consumption. Hence, p-channel transistors are also needed. Unfortunately, hole mobilities are generally much lower than electron mobilities for III–V compounds. This article reviews the recent work to enhance hole mobilities in antimonide-based quantum wells. Epitaxial heterostructures have been grown with the channel material in 1–2% compressive strain. The strain modifies the valence band structure, resulting in hole mobilities as high as 1500 cm2/Vs. The next steps toward an ultra-low-power complementary metal oxide semiconductor technology will include development of a compatible insulator technology and integration of n- and p-channel transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Nguyen, L.E. Larson, U.K. Mishra, Proc. IEEE 80, 494 (1992).

    Google Scholar 

  2. B.R. Bennett, R. Magno, J.B. Boos, W. Kruppa, M.G. Ancona, Solid State Electron. 49, 1875 (2005).

    Google Scholar 

  3. H.L. Stormer, K. Baldwin, A.C. Gossard, W. Wiegmann, Appl. Phys. Lett. 44, 1062 (1984).

    Google Scholar 

  4. S. Tiwari, W.I. Wang, IEEE Electron Device Lett. 5, 333 (1984).

    Google Scholar 

  5. H. Park, P. Mandeville, R. Saito, P.J. Tasker, W.J. Schaff, L.F. Eastman, Proceedings: IEEE/ Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits 101 (1989).

  6. P.P. Ruden, M. Shur, D.K. Arch, R.R. Daniels, D.E. Grider, T.E. Nohava, IEEE Trans. Electron Devices 36, 2371 (1989).

    Google Scholar 

  7. N. Hara, H. Suehiro, M. Shima, S. Kuroda, IEEE Electron Device Lett. 18, 63 (1997).

    Google Scholar 

  8. J.H. Tsai, K.P. Zhu, Y.C. Chu, S.Y. Chiu, Electron. Lett. 39, 1611 (2003).

    Google Scholar 

  9. Y.J. Chan, D. Pavlidis, IEEE Trans. Electron Devices 39, 466 (1992).

    Google Scholar 

  10. A.M. Kusters, A. Kohl, V. Sommer, R. Muller, K. Heime, IEEE Trans. Electron Devices 40, 2164 (1993).

    Google Scholar 

  11. T.J. Drummond, T.E. Zipperian, I.J. Fritz, J.E. Schirber, T.A. Plut, Appl. Phys. Lett. 49, 461 (1986).

    Google Scholar 

  12. R.T. Hsu, W.C. Hsu, J.S. Wang, M.J. Kao, Y.H. Wu, J.S. Su, Jpn. J. Appl. Phys. 35, 2085 (1996).

    Google Scholar 

  13. H.J. Kim, D.M. Kim, D.H. Woo, S.I. Kim, S.H. Kim, J.I. Lee, K.N. Kang, K. Cho, Appl. Phys. Lett. 72, 584 (1998).

    Google Scholar 

  14. L.F. Luo, K.F. Longenbach, W.I. Wang, Electron. Lett. 27, 472 (1991).

    Google Scholar 

  15. K. Yoh, H. Taniguchi, K. Kiyomi, M. Inoue, Jpn. J. Appl. Phys. Part 1 30, 3833 (1991).

    Google Scholar 

  16. B.R. Bennett, M.G. Ancona, J.B. Boos, C.B. Canedy, S.A. Khan, J. Cryst. Growth 311, 47 (2008).

    Google Scholar 

  17. B.R. Bennett, M.G. Ancona, J. Brad Boos, B.V. Shanabrook, Appl. Phys. Lett. 91, 042104 (2007).

    Google Scholar 

  18. J.B. Boos, B.R. Bennett, N.A. Papanicolaou, M.G. Ancona, J.G. Champlain, R. Bass, B.V. Shanabrook, Electron. Lett. 43, 834 (2007).

    Google Scholar 

  19. M. Radosavljevic, T. Ashley, A. Andreev, S.D. Coomber, G. Dewey, M.T. Emeny, M. Fearn, D.G. Hayes, K.P. Hilton, M.K. Hudait, R. Jefferies, T. Martin, R. Pillarisetty, W. Rachmady, T. Rakshit, S.J. Smith, M.J. Uren, D.J. Wallis, P.J. Wilding, Robert Chau, IEDM Technical Digest, 727 (2008).

  20. S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, P. Vogl, IEEE Trans. Electron Devices 54, 2137 (2007).

    Google Scholar 

  21. S. Takagi, T. Tezuka, T. Irisawa, S. Nakaharai, T. Numata, K. Usuda, N. Sugiyama, M. Shichijo, R. Nakane, S. Sugahara, Solid State Electron. 51, 526 (2007).

    Google Scholar 

  22. J.B. Boos, B.R. Bennett, N.A. Papanicolaou, M.G. Ancona, J.G. Champlain, D. Park, W. Kruppa, B.D. Weaver, R. Bass, B.V. Shanabrook, paper presented at the “Device Research Conference” University Park, PA, 23 June 2009.

    Google Scholar 

  23. J.F. Klem, J.A. Lott, J.E. Schirber, S.R. Kurtz, S.Y. Lin, J. Electron. Mater. 22, 315 (1993).

    Google Scholar 

  24. J.B. Boos, B.R. Bennett, N.A. Papanicolaou, M.G. Ancona, J.G. Champlain, Y.C. Chou, M.D. Lange, J.M. Yang, R. Bass, D. Park, B.V. Shanabrook, IEICE Trans. Electron. E91c, 1050 (2008).

    Google Scholar 

  25. W. Kruppa, J.B. Boos, B.R. Bennett, N.A. Papanicolaou, Electron. Lett. 44, 1155 (2008).

    Google Scholar 

  26. M. Edirisooriya, T.D. Mishima, C.K. Gaspe, K. Bottoms, R.J. Hauenstein, M.B. Santos, J. Cryst. Growth 311, 1972 (2009).

    Google Scholar 

  27. M.B. Santos, private communication (September, 2008).

  28. M.L. Lee, E.A. Fitzgerald, M.T. Bulsara, M.T. Currie, A. Lochtefeld, J. Appl. Phys. 97, 011101 (2005).

    Google Scholar 

  29. R. Chau, S. Datta, M. Doczy, B. Doyle, J. Jin, J. Kavalieros, A. Majumdar, M. Metz, M. Radosavljevic, IEEE Trans. Nanotechnol. 4, 153 (2005).

    Google Scholar 

  30. G. Delhaye, L. Desplanque, X. Wallart, J. Appl. Phys. 104, 066105 (2008).

    Google Scholar 

  31. D.H. Kim, J.A. del Alamo, IEEE Trans. Electron Devices 55, 2546 (2008).

    Google Scholar 

  32. D.H. Kim, J.A. del Alamo, J.H. Lee, K.S. Seo, IEEE Trans. Electron Devices 54, 2606 (2007).

    Google Scholar 

  33. J.H. Tsai, T.Y. Weng, C.M. Li, Semicond. Sci. Technol. 23, 075018 (2008).

    Google Scholar 

  34. D.H. Kim, J.A. del Alamo, IEDM Technical Digest, 719 (2008).

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, B.R., Ancona, M.G. & Boos, J.B. Compound Semiconductors for Low-Power p-Channel Field-Effect Transistors. MRS Bulletin 34, 530–536 (2009). https://doi.org/10.1557/mrs2009.141

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.141

Navigation