Skip to main content
Log in

Ultimate Scaling of CMOS Logic Devices with Ge and III–V Materials

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Over the years, many new materials have been introduced in advanced complementary metal oxide semiconductor (CMOS) processes in order to continue the trend of reducing the gate length and increasing the performance of CMOS devices. This is clearly evidenced in the International Technology Roadmap for Semiconductors (ITRS), which indicates the requirements and technological challenges in the microelectronics industry in various technology nodes. Every new technology node, characterized by the minimal device dimensions that are used, has required innovations in new materials and transistor design. The introduction of deposited high-κ gate dielectrics and metal gates as replacements for the thermally grown SiO2 and poly-Si electrode was a major challenge that has been met in the transition toward the 32 nm technology node since it replaced the heart of the metal oxide semiconductor structure. For the next generation of technology nodes, even bigger hurdles will need to be overcome, since new device structures and high-mobility channel materials such as Ge and III–V compounds might be needed, according to the ITRS roadmap, to meet the power and performance specifications of the 16 nm CMOS node and beyond. The basic properties of these high-mobility channel materials and their impact on the device performance have to be fully understood to allow process integration and full-scale manufacturing. In addition to thermal stability, compatibility with other materials, electronic transport properties, and especially the passivation of electronically active defects at the interface with a high-κ dielectric, are enormous challenges. Many encouraging results have been obtained, but the stringent demands in terms of electrical performance and oxide thickness scaling needed for highly scaled CMOS devices are not yet fully met. Other areas where breakthroughs will be needed are the formation of low-resistivity contacts, especially on III–V materials, and III–V materials suited for pMOS channels. An overview of the major successes and remaining critical issues in the materials research on high-mobility channel materials for advanced CMOS devices is given in this issue of MRS Bulletin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.E. Moore, Electronics 38, 114 (1965).

    Google Scholar 

  2. R. Dennard, F. Gaensslen, H. Yu, V. Rideout, E. Bassous, A. Leblanc, IEEE J. Solid-State Circuits 9, 256 (1974).

    Google Scholar 

  3. G. Baccarani, M. Wordeman, R. Dennard, IEEE Trans. Electron Devices 31, 452 (1984).

    Google Scholar 

  4. R. Chau, “Gate Dielectric Scaling for High-Performance CMOS: from SiO2 to High-κ Metal-Gate,” (International Workshop on Gate Insulator, November 2003), pp. 124–126.

    Google Scholar 

  5. Intel, “Intel’s Transistor Technology Breakthrough Represents Biggest Change to Computer Chips in 40 Years,” (January 2007); www.intel.com.

  6. K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, C.-H. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks, R. Huessner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz, B. McIntyre, P. Moon, J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vandervoorn, S. Williams, K. Zawadzki, IEDM Tech. Dig. (IEEE Piscataway) 247 (2007).

  7. R. Chau, S. Datta, M. Doczy, B. Doyle, B. Jin, B. Kavalieros, A. Majumdar, M. Metz, M. Radosavljevic, IEEE Trans. Nanotechnol. 4 (2), 153 (March 2005).

    Google Scholar 

  8. J. del Alamo, D. Antoniadis, “IEDM Short Course: Emerging Nanotechnology and Nano-Electronics,” Washington, DC, 9 December 2007.

    Google Scholar 

  9. M. Lundstrom, IEEE Electron Device Lett. 18, 361 (1997).

    Google Scholar 

  10. S. Takagi, T. Irisawa, T. Tezuka, T. Numata, S. Nakaharai, N. Hirashita, Y. Moriyama, K. Usuda, E. Toyoda, S. Dissanayake, M. Shichijo, R. Nakane, S. Sugahara, M. Takenaka, N. Sugiyama, IEEE Trans. Electron Devices 55, 21 (2008).

    Google Scholar 

  11. H. Becke, R. Hall, J. White, Solid-State Electron. 8, 813 (1965).

    Google Scholar 

  12. N. Goel, D. Heh, S. Koveshnikov, K. Majumdar, I. Ok, S. Oktyabrsky, V. Tokranov, R. Khambapati, M. Yakimov, Y. Sun, P. Pianetta, C.K. Gaspe, M.B. Santos, J. Lee, S. Datta, P. Majhi, W. Tsai, IEDM Tech. Dig. 363 (2008).

  13. N. Wu, Q. Zhang, C. Zhu, D.S. Chan, M.F. Li, N. Balasubramanian, A. Chin, D.L. Kwong, Appl. Phys. Lett. 85, 4127 (2004).

    Google Scholar 

  14. P. Zimmerman, G. Nicholas, B. De Jaeger, B. Kaczer, A. Stesmans, L. Ragnarsson, D. Brunco, F. Leys, M. Caymax, G. Winderickx, K. Opsomer, M. Meuris, M. Heyns, IEDM Tech. Dig. (IEEE Piscataway) 655 (2006).

  15. S. Koveshnikov, W. Tsai, I. Ok, J.C. Lee, V. Torkanov, M. Yakimov, S. Oktyabrsky, Appl. Phys. Lett. 88, 022106 (2006).

    Google Scholar 

  16. I. Ok, H. Kim, M. Zhang, C.Y. Kang, S.J. Rhee, C. Choi, S.A. Krishnan, T. Lee, F. Zhu, G. Thareja, J.C. Lee, IEEE Electron Device Lett. 27, 145 (2006).

    Google Scholar 

  17. S.J. Koester, E.W. Kiewra, Y. Sun, D.A. Meumayer, J.A. Ott, M. Copel, D.K. Sadana, D.J. Webb, J. Fompeyrine, J.-P. Locquet, C. Marchiori, M. Sousa, R. Germann, Appl. Phys. Lett. 89, 042104 (2006).

    Google Scholar 

  18. D. Shahrjerdi, M.M. Oye, A.L. Holmes, S.K. Banerjee, Appl. Phys. Lett. 89, 043501 (2006).

    Google Scholar 

  19. H.C. Chin, M. Zhu, C.H. Tung, G.S. Samudra, Y.C. Yeo, IEEE Electron Device Lett. 29, 553 (2008).

    Google Scholar 

  20. J.P. de Souza, E. Kiewra, Y. Sun, A. Callegari, D.K. Sadana, G. Shahidi, D.J. Webb, J. Fompeyrine, R. Germann, C. Rossel, C. Marchiori, Appl. Phys. Lett. 92, 153508 (2008).

    Google Scholar 

  21. T. Sugawara, Y. Oshima, R. Sreenivasan, P.C. McIntyre, Appl. Phys. Lett. 90, 112912 (2007).

    Google Scholar 

  22. S. Takagi, T. Maeda, N. Taoka, M. Nishizawa, Y. Morita, K. Ikeda, Y. Yamashita, M. Nishikawa, H. Kumagai, R. Nakane, S. Sugahara, N. Sugiyama, Microelectron. Eng. 84, 2314 (2007).

    Google Scholar 

  23. A. Delabie, F. Bellenger, M. Houssa, T. Conard, S. Van Elshocht, M. Caymax, M. Heyns, M. Meuris, Appl. Phys. Lett. 91, 082904 (2007).

    Google Scholar 

  24. S.J. Whang, S.J. Lee, F. Gao, N. Wu, C.X. Zhu, J.S. Pan, L.J. Tang, D.L. Kwong, IEDM Tech. Dig. (IEEE Piscataway) 307 (2004).

  25. M. Houssa, D. Nelis, D. Hellin, G. Pourtois, T. Conard, K. Paredis, K. Vanormelingen, A. Vantomme, M.K. Van Bael, J. Mullens, M. Caymax, M. Meuris, M. Heyns, Appl. Phys. Lett. 90, 222105 (2007).

    Google Scholar 

  26. G. Mavrou, S. Galata, P. Tsipas, A. Sotiropoulos, Y. Panayiotatos, A. Dimoulas, E.K. Evangelou, J.W. Seo, Ch. Dieker, J. Appl. Phys. 103, 014506 (2008).

    Google Scholar 

  27. A. Dimoulas, E. Gusev, P.C. McIntyre, M. Heyns, Eds., Advanced Gate Stacks for High-Mobility Semiconductors (Springer, New York, 2007).

    Google Scholar 

  28. E. Yablonovitch, C.J. Sandroff, R. Bhat, T. Gmitter, Appl. Phys. Lett. 51, 439 (1987).

    Google Scholar 

  29. B.J. Skromme, C.J. Sandroff, E. Yablonovitch, T. Gmitter, Appl. Phys. Lett. 51, 2022 (1987).

    Google Scholar 

  30. N. Goel, P. Majhi, C.O. Chui, W. Tsai, D. Choi, J.S. Harris, Appl. Phys. Lett. 89, 163517 (2006).

    Google Scholar 

  31. P.D. Ye, G.D. Wilk, J. Kwo, B. Yang, H.-J.L. Gossmann, M. Frei, S.N.G. Chu, J.P. Mannaerts, M. Sergent, M. Hong, K. Ng, J. Bude, IEEE Electron Device Lett. 24, 209 (2003).

    Google Scholar 

  32. P.D. Ye, B. Yang, K. Ng, J. Bude, G.D. Wilk, S. Halder, J.C.M. Hwang, Appl. Phys. Lett. 86, 063501 (2005).

    Google Scholar 

  33. M. Kobayashi, P.T. Chen, Y. Sun, N. Goel, P. Majhi, M. Garner, W. Tsai, P. Pianetta, Y. Nishi, Appl. Phys. Lett. 93, 182103 (2008).

    Google Scholar 

  34. M. Passlack, M. Hong, J.P. Mannaerts, Appl. Phys. Lett. 68, 1099 (1996).

    Google Scholar 

  35. M. Passlack, M. Hong, J.P. Mannaerts, R.L. Opila, S.N.G. Chu, N. Moriya, F. Ren, J.R. Kwo, IEEE Trans. Electron Devices 44, 214 (1997).

    Google Scholar 

  36. M. Hong, J. Kwo, A.R. Kortan, J.P. Mannaerts, A.M. Sergent, Science 283, 1897 (1999).

    Google Scholar 

  37. J.B. Boos, B.R. Bennett, N.A. Papanicolaou, M.G. Ancona, J.G. Champlain, R. Bass, B.V. Shanabrook, Electron. Lett. 43, 15 (2007).

    Google Scholar 

  38. M. Radosavljevic, T. Ashley, A. Andreev, S.D. Coomber, G. Dewey, M.T. Emeny, M. Fearn, D.G. Hayes, K.P. Hilton, M.K. Hudait, R. Jefferies, T. Martin, R. Pillarisetty, W. Rachmady, T. Rakshit, S.J. Smith, M.J. Uren, D.J. Wallis, P.J. Wilding, R. Chau, IEDM Tech. Dig. (IEEE Piscataway) 727 (2008).

  39. S. Nakaharai, T. Tezuka, N. Sugiyama, Y. Moriyama, S. Takagi, Appl. Phys. Lett. 83, 3516 (2003).

    Google Scholar 

  40. M.K. Hudait, G. Dewey, S. Datta, J.M. Fastenau, J. Kavalieros, W.K. Liu, D. Lubyshev, R. Pillarisetty, W. Rachmady, M. Radosavljevic, T. Rakshit, R. Chau, IEDM Tech. Dig. (IEEE Piscataway) 625 (2007).

  41. M. Shichijo, R. Nakane, S. Sugahara, S. Takagi, Jpn. J. Appl. Phys. 46, 5930 (2007).

    Google Scholar 

  42. M. Passlack, M. Heyns, I. Thayne, Compd. Semicond. 21 (May 2008).

  43. R. Chau, Proceedings of the CS MANTECH Conference, Chicago, IL, 14–17 April 2008.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heyns, M., Tsai, W. Ultimate Scaling of CMOS Logic Devices with Ge and III–V Materials. MRS Bulletin 34, 485–492 (2009). https://doi.org/10.1557/mrs2009.136

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.136

Navigation