Skip to main content
Log in

Cantilever Sensors: Nanomechanical Tools for Diagnostics

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Cantilever sensors have attracted considerable attention over the last decade because of their potential as a highly sensitive sensor platform for high throughput and multiplexed detection of proteins and nucleic acids. A micromachined cantilever platform integrates nanoscale science and microfabrication technology for the label-free detection of biological molecules, allowing miniaturization. Molecular adsorption, when restricted to a single side of a deformable cantilever beam, results in measurable bending of the cantilever. This nanoscale deflection is caused by a variation in the cantilever surface stress due to biomolecular interactions and can be measured by optical or electrical means, thereby reporting on the presence of biomolecules. Biological specificity in detection is typically achieved by immobilizing selective receptors or probe molecules on one side of the cantilever using surface functionalization processes. When target molecules are injected into the fluid bathing the cantilever, the cantilever bends as a function of the number of molecules bound to the probe molecules on its surface. Mass-produced, miniature silicon and silicon nitride microcantilever arrays offer a clear path to the development of miniature sensors with unprecedented sensitivity for biodetection applications, such as toxin detection, DNA hybridization, and selective detection of pathogens through immunological techniques. This article discusses applications of cantilever sensors in cancer diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Thundat, P.I. Oden, R.J. Warmack, Microscale Thermophys. Eng. 1, 185 (1997).

    Google Scholar 

  2. T. Thundat, R.J. Warmack, G.Y. Chen, D.P. Allison, Appl. Phys. Lett. 64, 2894 (1994).

    Google Scholar 

  3. P.-S. Lee, J. Lee, N. Shin, K.-H. Lee, D. Lee, S. Jeon, D. Choi, W. Hwang, H. Park, Adv. Mater. 20, 1732 (2008).

    Google Scholar 

  4. P.I. Oden, G.Y. Chen, R.A. Steele, R.J. Warmack, T. Thundat, Appl. Phys. Lett. 68, 3814 (1996).

    Google Scholar 

  5. T.P. Burg, M. Godin, S.M. Knudsen, W. Shen, G. Carlson, J.S. Foster, K. Babcock, S.R. Manalis, Nature 446, 1066 (2007).

    Google Scholar 

  6. R. Raiteri, H.-J. Butt, J. Phys. Chem. 99, 15728 (1995).

    Google Scholar 

  7. R. Raiteri, H.-J. Butt, M. Grattarola, Electorchim. Acta. 46, 157 (2000).

    Google Scholar 

  8. W. Haiss, Rep. Prog. Phys. 64, 591 (2001).

    Google Scholar 

  9. G. Meyer, N.M. Amer, Appl. Phys. Lett. 53, 1045 (1988).

    Google Scholar 

  10. A. Boisen, J. Thaysen, H. Jensenius, O. Hansen, Ultramicroscopy 82, 11 (2000).

    Google Scholar 

  11. S.S. Lee, R.M. White, Sens. Actuators A 52, 41 (1996).

    Google Scholar 

  12. J.H. Lee, K.H. Yoon, T.S. Kim, Integr. Ferroelectr. 50, 43 (2002).

    Google Scholar 

  13. G. Shekhawat, S.-H. Tark, V.P. Dravid, Science 311, 1592 (2006).

    Google Scholar 

  14. C.L. Britton Jr., R.L. Jones, P.I. Oden, Z. Hu, R.J. Warmack, S.F. Smith, W.L. Bryan, J.M. Rochelle, Ultramicroscopy 82, 17 (2000).

    Google Scholar 

  15. G. Binnig, C.F. Quate, C. Gerber, Phys. Rev. Lett. 56, 930 (1986).

    Google Scholar 

  16. N.V. Lavrik, M.J. Sepaniak, P.G. Datskos, Rev. Sci. Instrum. 75, 2229 (2004).

    Google Scholar 

  17. P.A. Rasmussen, J. Thaysen, O. Hensen, S.C. Eriksen, A. Boisen, Ultramicroscopy, 97, 371 (2002).

    Google Scholar 

  18. A. Choudhury, A Piezoresistive Microcantilever Array for Chemical Sensing Applications. Mechanical Engineering. PhD diss., Georgia Institute of Technology, 2007.

  19. J. Fritz, M.K. Baller, H.P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, J.K. Gimzeski, Science 288, 316 (2000).

    Google Scholar 

  20. K.M. Hansen, H.-F. Ji, G. Wu, R. Datar, R. Cote, A. Majumdar, T. Thundat, Anal. Chem. 73, 1567 (2001).

    Google Scholar 

  21. G. Wu, R.H. Datar, K.M. Hansen, T. Thundat, R. Cote, A. Majumdar, Nature Biotechnol. 19, 856 (2001).

    Google Scholar 

  22. G. Wu, H. Ji, K.M. Hansen, T. Thundat, R. Datar, R. Cote, M.F. Hagan, A.K. Chakraborty, A. Majumdar, Proc. Natl. Acad. Sci. U.S.A. 98, 1560 (2001).

    Google Scholar 

  23. R. McKendry, J. Zhang, Y. Arntz, T. Strunz, M. Hegner, H.P. Lang, M.K. Baller, U. Certa, E. Meyer, H.-J. Güntherodt, Ch. Gerber, Proc. Natl. Acad. Sci. U.S.A. 99, 9783 (2002).

    Google Scholar 

  24. Y. Arntz, J.D. Seelig, H.P. Lang, J. Zhang, P. Hunziker, J.P. Ramseyer, E. Meyer, M. Hegner, Ch. Gerber, Nanotechnology 14, 86 (2003).

    Google Scholar 

  25. J. Zhang, H.P. Lang, F. Huber, A. Bietsch, W. Grange, U. Certa, R. McKendry, H.-J. Güntherodt, M. Hegner, Ch. Gerber, Nature Nanotechnol. 1, 214 (2006).

    Google Scholar 

  26. M. Yue, J.C. Stachowiak, H. Lin, R. Datar, R. Cote, A. Majumdar, Nano. Lett. 8, 520 (2008).

    Google Scholar 

  27. J. Mertens, C. Rogero, M. Calleja, D. Ramos, J.A. Martin-Gago, C. Briones, J. Tamayo, Nature Nanotechnol. 3, 301 (2008).

    Google Scholar 

  28. P.A. Rasmussen, J. Thaysen, O. Hansen, S.C. Eriksen, A. Boisen, Ultramicroscopy 97, 371 (2003).

    Google Scholar 

  29. M. Godin, P.J. Williams, V. Tabard-Cossa, O. Laroche, L.Y. Beaulieu, R.B. Lennox, P. Grütter, Langmuir 20, 7090 (2004).

    Google Scholar 

  30. V. Tabard-Cossa, M. Godin, I.J. Burgess, T. Monga, R.B. Lennox, P. Grütter, Anal. Chem. 79, 8136 (2007).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datar, R., Kim, S., Jeon, S. et al. Cantilever Sensors: Nanomechanical Tools for Diagnostics. MRS Bulletin 34, 449–454 (2009). https://doi.org/10.1557/mrs2009.121

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.121

Navigation