Skip to main content
Log in

Environmental Degradation of Materials in Advanced Reactors

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Advanced fission-based reactors challenge our ability to fully understand environment–materials reactions in terms of fundamental stability and kinetics, including the influences of composition, microstructure, and system design, and to predict associated long-term performance. This article briefly describes corrosion reactions and the processes by which such are managed for several elevated-temperature environments associated with advanced reactor concepts: helium, molten Pb–Bi, fluorides, and supercritical water. For most of the subject environments, corrosion resistance critically depends on the ability to form and maintain protective surface layers. Effects of corrosion on mechanical behavior can be from thermally and chemically induced changes in microstructures or from environmental effects on cracking susceptibility. In most cases, the simultaneous effects of chemical reactivity and radiation have not been fully addressed, nor has much attention been paid to newly emerging alloy compositions or the effects of substantially increased operating temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Burlet, J.M. Gentzbittel, C. Cabet, P. Lamagnère, M. Blat, D. Renaud, S. Dubiez-Le Goff, D Pierron, “Evaluation of Nickel-Based Materials for VHTR Heat Exchanger,” in Structural Materials for Innovative Nuclear Systems (SMINS) (OECD Publishing, London, 2008). p. 79.

    Google Scholar 

  2. W. J. Quadakkers, Werkst. Korros. 36, 335 (1985).

    Google Scholar 

  3. C. Cabet, J. Chapovaloff, F. Rouillard, G. Girardin, D. Kaczorowski, K. Wolski, M. Pijolat, J. Nucl. Mater. 375, 173 (2008).

    Google Scholar 

  4. F. Rouillard, C. Cabet, K. Wolski, M. Pijolat, Oxid. Met. 68, 133 (2007).

    Google Scholar 

  5. C. Cabet, A. Terlain, P. Lett, L. Guétaz, J.M. Gentzbittel, Mater. Corros. 57, 147 (2006).

    Google Scholar 

  6. Y. Kurata, Y. Ogawa, H. Nakajima, T. Kondo, in Proc. Workshop Structural Design Criteria for HTR, G. Breitbach, F. Schubert, H. Nickel, Eds. (Fraunhofer IZFP, Saarbrücken, Germany, 1989), p. 275.

    Google Scholar 

  7. P.J. Ennis, K.P. Mohr, H. Schuster, Nucl. Technol. 66, 363 (1984).

    Google Scholar 

  8. P. Kofstad, High Temperature Corrosion (Elsevier, London, 1988).

    Google Scholar 

  9. M.G. Nicholas, C.F. Old, J. Mater Sci. 14, 1 (1979).

    Google Scholar 

  10. L.F. Epstein, Chem. Eng. Prog. Symp. Ser. 20 53, 67 (1957).

    Google Scholar 

  11. J.R. Weeks, C.J. Klamut, D.H. Gurinsky, Proc. Alkali Metal Coolants Symp. (IAEA, Vienna, Austria, 1966), p. 3.

    Google Scholar 

  12. R.C. Asher, D. Davies, S.A. Beetham, Corros. Sci. 17, 545 (1977).

    Google Scholar 

  13. B.A. Shmatko, A.E. Rusanov, Mater. Sci. 36, 689 (2000).

    Google Scholar 

  14. F. Barbier, A. Rusanov, J. Nucl. Mater. 296, 231 (2001).

    Google Scholar 

  15. H. Glasbrenner, J. Konys, G. Mueller, A. Rusanov, J. Nucl. Mater. 296, 237 (2001).

    Google Scholar 

  16. J. Zhang, N. Li, Y. Chen, A.E. Rusanov, J. Nucl. Mater. 336, 1 (2005).

    Google Scholar 

  17. Y. Kurata, M. Futakawa, K. Kikuchi, S. Saito, T. Osugi, J. Nucl. Mater. 301, 28 (2002).

    Google Scholar 

  18. I.G. Wright, P.F. Tortorelli, M. Schütze, “Oxide Growth and Exfoliation on Alloys Exposed to Steam” (EPRI Rep. 1013666, EPRI, Palo Alto, CA, 2007).

    Google Scholar 

  19. C.W. Forsberg, Proc. 2006 Intl. Cong. Adv. Nucl. Power Plants (ICAPP’06) (ANS, La Grange Park, IL, 2006), p. 6292.

    Google Scholar 

  20. D.F. Williams, L.M. Toth, K.T. Clarno “Assessment of Candidate Molten Salt Coolants for the Advanced High-Temperature Reactor (AHTR),” (Rep. ORNL/TM-2006/12, ORNL, Oak Ridge, TN, 2006).

  21. M. Broc, P. Fauvet, J. Sannier, G. Santarini, J. Nucl. Mater. 119, 123 (1983).

    Google Scholar 

  22. J.R. Keiser, D.L. Manning, R.E. Clausing, “Corrosion Resistance of Some Nickel-Base Alloys to Molten Fluoride Salts Containing UF4 and Tellurium,” in Molten Salts (The Electrochemical Society, New York, 1976), pp. 315–328.

    Google Scholar 

  23. J.R. Keiser, “Status of Tellurium–Hastelloy N Studies in Molten Fluoride Salts,” (Rep. ORNL/TM-6002, ORNL, Oak Ridge, TN, 1977).

    Google Scholar 

  24. G.S. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E.A. West, T.R. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren, C. Pister, J. Nucl. Mater. 371, 176 (2007).

    Google Scholar 

  25. T.R. Allen, L. Tan, Y. Chen, X. Ren, K. Sridharan, G.S. Was, G. Gupta, P. Ampornrat, “Corrosion of Ferritic–Martensitic Alloys in Supercritical Water for GenIV Application,” in Proc. Global 2005 (AESJ, Takasaki City, Japan, 2005), paper 419.

    Google Scholar 

  26. S.S. Hwang, B.H. Lee, J.G. Kim, J. Jang, J. Nucl. Mater. 372, 177 (2008).

    Google Scholar 

  27. Y. Chen, K. Sridharan, S. Ukai, T.R. Allen, J. Nucl. Mater. 371, 118 (2007).

    Google Scholar 

  28. G.J. Yurek, D. Eisen, A. Garratt-Reed, Metall. Trans. A 13, 473 (1982).

    Google Scholar 

  29. A.T. Motta, A. Yilmazbayhan, M.J. Gomes da Silva, R.J. Comstock, G.S. Was, J.T. Busby, E. Gartner, Q. Peng, Y.H. Jeong, J.Y. Park, J. Nucl. Mater. 371, 61 (2007).

    Google Scholar 

  30. S. Teysseyre, Z. Jiao, E. West, G.S. Was, J. Nucl. Mater. 371, 107 (2007).

    Google Scholar 

  31. S. Teysseyre, G.S. Was, “Stress Corrosion Cracking of Neutron Irradiated Steel in Supercritical Water,” in Proc. 13th International Conference on Degradation of Materials in Nuclear Power Systems—Water Reactors, T.R. Allen, J. Busby, P.J. King, Eds. (Canadian Nuclear Society, Toronto, Ontario, Canada, 2007).

    Google Scholar 

  32. E.A. West, S. Teysseyre, Z. Jiao, G.S. Was, “Influence of Irradiation Induced Microstructure on the Stress Corrosion Cracking Behavior of Austenitic Alloys in Supercritical Water,” in Proc. 13th International Conference on Degradation of Materials in Nuclear Power Systems—Water Reactors, T.R. Allen, J. Busby, P.J. King, Eds. (Canadian Nuclear Society, Toronto, Ontario, Canada, 2007).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabet, C., Jang, J., Konys, J. et al. Environmental Degradation of Materials in Advanced Reactors. MRS Bulletin 34, 35–39 (2009). https://doi.org/10.1557/mrs2009.10

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.10

Navigation