Skip to main content

Advertisement

Log in

Recent Developments in Artificial Molecular-Machine–Based Active Nanomaterials and Nanosystems

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Artificial molecular machines capable of converting chemical, electrochemical, and photochemical energy into mechanical motion represent a high-impact, fast-growing field of interdisciplinary research. These molecular-scale systems utilize a “bottom-up” technology centered upon the design and manipulation of molecular assemblies and are potentially capable of delivering efficient actuation at length scales dramatically smaller than traditional microscale actuators. As actuation materials, molecular machines have many advantages, such as high strain (40%–60%), high force and energy densities, and the capability to maintain their actuation properties from the level of a single molecule to the macroscale. These advantages have inspired researchers to develop molecular-machine–based active nanomaterials and nanosystems, including electroactive and photoactive polymers. This article will discuss the structures and properties of artificial molecular machines, as well as review recent progress on efforts to move molecular machines from solution to surfaces to devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Balzani, M. Gomez-Lopez, J.F. Stoddart, Acc. Chem. Res. 31, 405 (1998).

    Google Scholar 

  2. T.R. Kelly, D.D. Silva, R.A. Silva, Nature 401, 150 (1999).

    Google Scholar 

  3. V. Balzani, A. Credi, F.M. Raymo, J.F. Stoddart, Angew. Chem. Int. Ed. 39, 3348 (2000).

    Google Scholar 

  4. V. Balzani, A. Credi, M. Venturi, Molecular Devices and Machines: A Journey into the Nano World (Wiley-VCH, Weinheim, 2003).

    Google Scholar 

  5. K. Kinbara, T. Aida, Chem. Rev. 105, 1377 (2005).

    Google Scholar 

  6. R.P. Feynman, Eng. Sci. 23, 22 (1960).

    Google Scholar 

  7. S. Shinkai, O. Manabe, Top. Curr. Chem. 121, 67 (1984).

    Google Scholar 

  8. R.A. Bissell, E. Córdova, A.E. Kaifer, J.F. Stoddart, Nature 369, 133 (1994).

    Google Scholar 

  9. L. Raehm, J.M. Kern, J.P. Sauvage, Chem. Eur. J. 5, 3310 (1999).

    Google Scholar 

  10. A.M. Brouwer, C. Frochot, F.G. Gatti, D.A. Leigh, L. Mottier, F. Paolucci, S. Roffia, G.W.H. Wurpel, Science 291, 2124 (2001).

    Google Scholar 

  11. A.M. Elizarov, S.H. Chiu, J.F. Stoddart, J. Org. Chem. 67, 9175 (2002).

    Google Scholar 

  12. Q.M. Zhang, T. Furukawa, Y. Bar-Cohen, J. Scheinbeim, Eds., Electroactive Polymers (Mater. Res. Symp. Proc. 600, Warrendale, PA, 1999).

  13. Y. Bar-Cohen, Ed., Electroactive Polymer (EAP) Actuators as Artificial Muscles—Reality, Potential and Challenges (SPIE Press, Bellingham, WA, 2004).

  14. Y. Bar-Cohen, Ed., Proc. SPIE 6168 (2006).

  15. Y. Liu, A.H. Flood, P.A. Bonvallet, S.A. Vignon, B.H. Northrop, H.R. Tseng, J.O. Jeppesen, T.J. Huang, B. Brough, M. Baller, S. Magonov, S.D. Solares, W.A. Goddard, C.M. Ho, J.F. Stoddart, J. Am. Chem. Soc. 127, 9745 (2005).

    Google Scholar 

  16. F.J. Kull, E.P. Sablin, R. Lau, R.J. Fletterick, R.D. Vale, Nature 380, 550 (1996).

    Google Scholar 

  17. J. Howard, Nature 389, 561 (1997).

    Google Scholar 

  18. J.F. Stoddart, personal communication (2006).

  19. H.R. Tseng, D. Wu, N. Fang, X. Zhang, J.F. Stoddart, Chem. Phys. Chem. 5, 111 (2004).

    Google Scholar 

  20. M.C. Petty, Langmuir–Blodgett Films: An Introduction (Cambridge University Press, Cambridge, U.K., 1996).

    Google Scholar 

  21. I.C. Lee, C.W. Frank, T. Yamamoto, H.R. Tseng, A.H. Flood, J.F. Stoddart, J.O. Jeppesen, Langmuir 20, 5809 (2004).

    Google Scholar 

  22. D.W. Steuerman, H.R. Tseng, A.J. Peters, A.H. Flood, J.O. Jappesen, K.A. Nielsen, J.F. Stoddart, J.R. Heath, Angew. Chem. Int. Ed. 43, 6486 (2004).

    Google Scholar 

  23. D.A. Leigh, A.F. Morales, E.M. Pérez, J.K.Y. Wong, C.G. Saiz, A.M.Z. Slawin, A.J. Carmichael, A.M. Haddleton, A.M. Brouwer, W. Jan Burna, G.W.H. Wurpel, S. León, F. Zerbetto, Angew. Chem. Int. Ed. 44, 3062 (2005).

    Google Scholar 

  24. H. Noji, R. Yasuda, M. Yoshida, K. Kinosita, Nature 386, 299 (1997).

    Google Scholar 

  25. R.D. Vall, R.A. Milligan, Science 288, 88 (2000).

    Google Scholar 

  26. R.K. Soong, G.D. Bachand, H.P. Neves, A.G. Olkhovets, H.G. Craighead, C.D. Montemagno, Science 290, 1555 (2000).

    Google Scholar 

  27. J.A. Zasazinski, R. Viswanathan, L. Madsen, J. Garnaes, D.K. Schwartz, Science 263, 1344 (1994).

    Google Scholar 

  28. C.P. Collier, E.W. Wong, M. Belohradský, F.M. Raymo, J.F. Stoddart, P.J. Kuekes, R.S. Williams, J.R. Heath, Science 285, 391 (1999).

    Google Scholar 

  29. M. Asakawa, M. Higuchi, G. Mattersteig, T. Nakamura, A.R. Pease, F.M. Raymo, T. Shimizu, J.F. Stoddart, Adv. Mater. 12, 1099 (2000).

    Google Scholar 

  30. T.J. Huang, H.R. Tseng, L. Sha, W. Lu, B. Brough, A.H. Flood, B.D. Yu, P.C. Celestre, J.P. Chang, J.F. Stoddart, C.M. Ho, Nano Lett. 4, 2065 (2004).

    Google Scholar 

  31. A. Ulman, Characterization of Organic Thin Films (Butterworth-Heinemann, Boston, 1995).

    Google Scholar 

  32. F.J. Kull, S.A. Endow, Trends Biochem. Sci. 29, 103 (2004).

    Google Scholar 

  33. D.D. Hackney, Annu. Rev. Physiol. 58, 731 (1996).

    Google Scholar 

  34. T.J. Huang, B. Brough, C.M. Ho, Y. Liu, A.H. Flood, P.A. Bonvallet, H.R. Tseng, J.F. Stoddart, M. Baller, S. Magonov, Appl. Phys. Lett. 85, 5391 (2004).

    Google Scholar 

  35. T.J. Huang, A.H. Flood, B. Brough, Y. Liu, P.A. Bonvallet, S. Kang, C.W. Chu, T.F. Guo, W.X. Lu, Y. Yang, J.F. Stoddart, C.M. Ho, IEEE Trans. Autom. Sci. Eng. 3, 254 (2006).

    Google Scholar 

  36. R. Eelkema, M.M. Pollard, J. Vicario, N. Katsonis, B.S. Ramon, C.W.M. Bastiaansen, D.J. Broer, B.L. Feringa, Nature 440, 163 (2006).

    Google Scholar 

  37. J. Berná, D.A. Leigh, M. Lubomska, S.M. Mendoza, E.M. Pérez, P. Rudolf, G. Teobaldi, F. Zerbetto, Nat. Mater. 4, 704 (2005).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, T.J. Recent Developments in Artificial Molecular-Machine–Based Active Nanomaterials and Nanosystems. MRS Bulletin 33, 226–231 (2008). https://doi.org/10.1557/mrs2008.48

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2008.48

Navigation