Skip to main content
Log in

In Situ High-Resolution Transmission Electron Microscopy in the Study of Nanomaterials and Properties

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article introduces the use of in situ high-resolution transmission electron microscopy (HRTEM) techniques for the study and development of nanomaterials and their properties. Specifically, it shows how in situ HRTEM (and TEM) can be used to understand diverse phenomena at the nanoscale, such as the behavior of alloy phase formation in isolated nanometer-sized particles, the mechanical and transport properties of carbon nanotubes and nanowires, and the dynamic behavior of interphase boundaries at the atomic level. Current limitations and future potential advances in in situ HRTEM of nanomaterials are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-G. Lee, H. Mori, H. Yasuda, J. Mater. Res. 20, 1708 (2005).

    Google Scholar 

  2. J.-G. Lee, H. Mori, H. Yasuda, Phys. Rev. B 65, 132106 (2002).

    Google Scholar 

  3. T.B. Massalski, Binary Alloy Phase Diagrams (ASM, Ohio, 1986).

    Google Scholar 

  4. J.-G. Lee, H. Mori, Philos. Mag. 84, 2675 (2004).

    Google Scholar 

  5. J.-G. Lee, H. Mori, Proc. Materials Processing and Manufacturing Division Fifth Global Symposium S.M. Mukhopadhyay et al., Eds., 3 (TMS, Warrendale, 2004).

    Google Scholar 

  6. J.-G. Lee, H. Mori, Phys. Rev. Lett. 93, 235501 (2004).

    Google Scholar 

  7. H.P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer, Science 283, 1513 (1999).

    Google Scholar 

  8. H.Z.L. Wang, P. Poncharal, W.A. De Heer, Pure Appl. Chem. 72, 209 (2000).

    Google Scholar 

  9. H.C.Q. Chen, Y. Shi, Y.S. Zhang, J. Zhu, Y.J. Yan, Phys. Rev. Lett. 96, 075505 (2006).

    Google Scholar 

  10. H.X.D. Han, Y.F. Zhang, K. Zheng, Z. Zhang, Z.L. Wang, Nano Lett. 7, 452 (2007).

    Google Scholar 

  11. H.X.D. Han, K. Zheng,Y.F. Zhang, Z. Zhang, Z.L. Wang, Adv. Mater. 19, 2112 (2007).

    Google Scholar 

  12. H.P. Poncharal, C. Berger, Y. Yi, Z.L. Wang, W.A. de Heer, J. Phys. Chem., 106, 12104 (2002).

    Google Scholar 

  13. H.D. Golberg, P.M.F.J. Costa, O. Lourie, M. Mitome, X.D. Bai, Y. Bando, et al., Nano Lett. 7, 2146 (2007).

    Google Scholar 

  14. X.D. Bai, D. Golberg, Y. Bando, C.Y. Zhi, C.C. Tang, M. Mitome, K. Kurashima, Nano Lett. 7, 632 (2007).

    Google Scholar 

  15. J.Y. Huang, S. Chen, S.H. Jo, Z. Wang, D.X. Han, G. Chen, M.S. Dresselhaus, Z.F. Ren, Phys. Rev. Lett. 94, 236802 (2005).

    Google Scholar 

  16. J.Y. Huang, S. Chen, Z.Q. Wang, K. Kempa, Z.F. Ren, et al., Nature 439, 281 (2006).

    Google Scholar 

  17. H.J. Cumming, A. Zettl, M.R. McCartney, J.C.H. Spence, Phys. Rev. Lett. 88, 56804–1 (2002).

    Google Scholar 

  18. Z.L. Wang, R.P. Gao, W.A. de Heer, P. Poncharal, Appl. Phys. Lett. 80, 856 (2002).

    Google Scholar 

  19. W. Wei, Y. Liu, Y. Wei, K.L. Jiang, L.M. Peng, S.S. Fan, Nano Lett. 7, 64 (2007).

    Google Scholar 

  20. R.P. Gao, Z.W. Pan, Z.L. Wang, Appl. Phys. Lett. 78, 1757 (2001).

    Google Scholar 

  21. Z. Xu, X.D. Bai, E.G. Wang, Z.L. Wang, Appl. Phys. Lett. 87, 163106 (2005).

    Google Scholar 

  22. Z. Xu, X.D. Bai, E.G. Wang, Z.L Wang, J. Phys.: Condens. Matter 17, L507 (2005).

    Google Scholar 

  23. J.C.M. Wayman, H.I. Aaronson, J.P. Hirth, B.B. Rath, Eds., Metall. Mater. Trans. A 25A, 1781 (1994).

  24. H.I. Aaronson, Metall. Mater. Trans. A 48A, 2285 (2002).

    Google Scholar 

  25. J.W. Martin, R.D. Doherty, B. Cantor, Stability of Microstructure in Metallic Systems, 2nd Ed. (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  26. J.M. Howe, A.R.S. Gautam, K. Chatterjee, F. Phillipp, Acta Mater. 55, 2159 (2007).

    Google Scholar 

  27. W. Schweika, H. Reichert, W. Babik, O. Klein, S. Engemann, Phys. Rev. B 70, 041401R (2004).

    Google Scholar 

  28. D.B. Butrymowicz, J.R. Manning, M.E. Read, J. Phys. Chem. Ref. Data 3, 527 (1974).

    Google Scholar 

  29. J.M. Howe, W.E. Benson, Interface Sci. 2, 347 (1995).

    Google Scholar 

  30. R. Sinclair, J. Morgiel, A.S. Kirtikar, I.-W. Wu, A. Chiang, Ultramicroscopy 51, 41 (1993).

    Google Scholar 

  31. R. Kikuchi, J.W. Cahn, Acta Metall. 27, 1337 (1979).

    Google Scholar 

  32. M. Sluiter, Y. Kawazoe, Phys. Rev. B 54, 10381 (1996).

    Google Scholar 

  33. M. Asta, J.J. Hoyt, Acta Mater. 48, 1089 (2000).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howe, J.M., Mori, H. & Wang, Z.L. In Situ High-Resolution Transmission Electron Microscopy in the Study of Nanomaterials and Properties. MRS Bulletin 33, 115–121 (2008). https://doi.org/10.1557/mrs2008.24

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2008.24

Navigation