Skip to main content
Log in

Environmental (S)TEM Studies of Gas–Liquid–Solid Interactions under Reaction Conditions

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

We review the development of time-resolved, high-resolution environmental scanning/ transmission electron microscopy [E(S)TEM] for directly probing dynamic gas–solid, liquid–solid, and gas–liquid–solid interactions at the atomic level. Unlike a regular TEM, such a microscope allows us to use high gas pressures (up to 40 mbars) in the sample region. The unique information available from experiments performed using E(S)TEM has enabled visualization of the dynamic nature of nanostructures during reactions. Such information can be directly applied to the development of advanced nanomaterials such as carbon nanotubes, silicon nanowires and processes, including the design of novel routes to polymers synthesis, and has aided in the identification of important phenomena during catalysis, chemical vapor deposition, and electrochemical deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.R. Swann, N.J. Tighe, Jern. Ann. 155, 251 (1971).

    Google Scholar 

  2. R.T. Baker, P.S. Harris, R.B. Thomas, R.J. Waite, J. Catal. 30, 86 (1973).

    Google Scholar 

  3. P.L. Gai, W. Thoni, P.B. Hirsch, Philos. Mag. 35, 781 (1979).

    Google Scholar 

  4. E.P. Butler, K.F. Hale, Dynamic Experiments (North Holland, Amsterdam, 1981).

    Google Scholar 

  5. P.L. Gai (-Boyes), Catal. Rev. Sci. Eng. 34, 1 (1992).

    Google Scholar 

  6. I.M. Robertson, D. Teter, Microsc. Res. Tech. 42, 260 (1998).

    Google Scholar 

  7. R. Sharma, Microsc. Microan. 7, 494 (2001).

    Google Scholar 

  8. G.M. Parkinson, Catal. Lett. 2, 303 (1989).

    Google Scholar 

  9. R.C. Doole, G.M. Parkinson, J.M. Stead, Inst. Phys. Conf. Ser. 119, 157 (1991).

    Google Scholar 

  10. P.L. Gai, Philos. Mag. 43, 841 (1981); and J. Solid State Chem. 49, 25 (1983).

    Google Scholar 

  11. P.L. Gai, B.C. Smith, Nature 348, 430 (1990).

    Google Scholar 

  12. P.L. Gai, E.M. McCarron, Science 247, 553 (1990).

    Google Scholar 

  13. P.L. Gai, B.C. Smith, Ultramicroscopy 34, 17 (1990).

    Google Scholar 

  14. P.A. Crozier, R. Sharma, A.K. Datye, Microsc. Microan. 4, 278 (1998).

    Google Scholar 

  15. M.J. Sayagués, J.L. Hutchison, J. Solid State Chem. 143, 33 (1999).

    Google Scholar 

  16. R. Sharma, E. Schweda, D. Naedele, Chem. Mater. 13, 4014 (2001).

    Google Scholar 

  17. V.P. Oleshko, P.A. Crozier, R.D. Cantrell, A.D. Westwood, J. Electron. Microsc. 51, S27 (2002) (Suppl.).

    Google Scholar 

  18. J. Drucker, R. Sharma, J. Kouvetakis, J.K. Weiss, J. Appl. Phys. 77, 2846 (1995).

    Google Scholar 

  19. P.A. Crozier, J. Tolle, J. Kouvetakis, C. Ritter, Appl. Phys. Lett. 84, 3441 (2004).

    Google Scholar 

  20. W. van Dorp, R. van Someren, C. Hagen, P. Kruit, P.A. Crozier, Nano Lett. 5, 1303 (2005).

    Google Scholar 

  21. R. Sharma, M.J. McKelvy, H. Béarat, A.V.G. Chizmeshya, R.W. Carpenter, Philos. Mag. 84, 2711 (2004).

    Google Scholar 

  22. M.J. McKelvy, R. Sharma, AV.G. Chizmeshya, R.W. Carpenter, K. Streib, Chem. Mater. 13, 921 (2001).

    Google Scholar 

  23. R.-J. Liu, P.A. Crozier, C.M. Smith, D. Hucul, J. Blackson, G. Salaita, Appl. Catal. A 282, 111 (2005).

    Google Scholar 

  24. P.L. Gai, K. Kourtakis, et al., Science 267, 661 (1995).

    Google Scholar 

  25. E.D. Boyes, P.L. Gai, Ultramicroscopy 67, 219 (1997).

    Google Scholar 

  26. R. Sharma, P.A. Crozier, Transmission Electron Microscopy for Nanotechnology Z.L. Wang, Ed., 531 (Springer-Verlag and Tsinghua University Press, 2005).

  27. C. Lopez-Cartes, S. Bernal, J.J. Calvino, M. Cauqui, G. Blanco, J. Perez-Omil, J. Pintado, S. Helveg, P.L. Hansen, Chem. Comm. 644 (2003).

  28. J. Haggin, Am. Chem. Soc. Chem. Eng. News 73 (30), 39 (1995).

    Google Scholar 

  29. M. Jacoby, Am. Chem. Soc. Chem. Eng. News 80 (31), 26 (2002).

    Google Scholar 

  30. P.L. Gai, K. Kourtakis, E.D. Boyes, Catal. Lett. 102, 1 (2005).

    Google Scholar 

  31. P.L. Gai, Microsc. Microan. 8, 21 (2002).

    Google Scholar 

  32. P.L. Gai, E.D. Boyes, Electron Microscopy in Heterogeneous Catalysis (Institute of Physics Publ., UK, USA, 2003).

    Google Scholar 

  33. J.M. Thomas, P.L. Gai, Adv. Catal. 48, 171 (2004).

    Google Scholar 

  34. P.L. Gai, C.C. Torardi, E.D. Boyes, Ch. 45, 745: Turning Points in Soid State Chemistry, (Eds: K.D.M. Harris and P.P.Edwards), Royal Society of Chemistry U.K. (2007).

    Google Scholar 

  35. R. Wang, P.A. Crozier, R. Sharma, J. Adams, J. Phys. Chem. B 110, 18278 (2006).

    Google Scholar 

  36. T.W. Hansen, J. Wagner, P.L. Hansen, S. Dahl, H. Topsoe, J. Jacobsen, Science 294, 1504 (2001).

    Google Scholar 

  37. R. Sharma, P.A. Crozier, Z.C. Kang, L. Eyring, Philos. Mag. 84, 2731 (2004).

    Google Scholar 

  38. P.W. Hawkes, J.C. Spence, Eds., Science of Microscopy (Springer, 2006).

  39. S. Helveg, C. Lopez-Cartes, J. Sehested, P.L. Hansen, B. Clausen, J. Rostrup-Nielsen, F. Abild-Pedersen, J. Norskov, Nature 427, 426 (2004).

    Google Scholar 

  40. S.R. Hofmann, R. Sharma, C. Ducati, G. Du, C. Mattevi, C. Cepek, M. Cantoro, S. Pisana, A. Parvez, F. Cervantes-Sodi, A.C. Ferrari, R. Dunin-Borkowski, S. Lizzit, L. Petaccia, A. Goldoni, J. Robertson, Nano Lett. 7, 602 (2007).

    Google Scholar 

  41. R. Sharma, P. Rez, M. Brown, G.H. Du, M.M.J. Treacy, Nanotechnology 18, 125602 (2007).

    Google Scholar 

  42. F.M. Ross, J. Tersoff, M.C. Reuter, Phys. Rev. Lett. 95, 146104 (2005).

    Google Scholar 

  43. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964).

    Google Scholar 

  44. S. Kodambaka, J. Tersoff, M.C. Reuter, F.M. Ross, Phys. Rev. Lett. 96, 096105 (2006).

    Google Scholar 

  45. J.B. Hannon, S. Kodambaka, F.M. Ross, R.M. Tromp, Nature 440, 45 (2006).

    Google Scholar 

  46. S. Kodambaka, J. Tersoff, M.C. Reuter, F.M. Ross, Science 316, 729 (2007).

    Google Scholar 

  47. K.A. Dick, S. Kodambaka, M.C. Reuter, K. Deppert, L. Samuelson, W. Seifert, L.R. Wallenberg, F.M. Ross, Nano Lett. 7, 1817 (2007).

    Google Scholar 

  48. M.J. Williamson, R.M. Tromp, P.M. Vereecken, R. Hull, F.M. Ross, Nat. Mater. 2, 532 (2003).

    Google Scholar 

  49. A. Radisic, P.M. Vereecken, J.B. Hannon, P.C. Searson, F.M. Ross, Nano Lett. 6, 238 (2006).

    Google Scholar 

  50. A. Radisic, P.M. Vereecken, P.C. Searson, F.M. Ross, Surf. Sci. 600, 1817 (2006).

    Google Scholar 

  51. A. Radisic, F.M. Ross, P.C. Searson, J. Phys. Chem. B 110, 7862 (2006).

    Google Scholar 

  52. http://www.hummingbirdscientific.com/products/liquid_cell_holder/product_FH_2000_TEM.pdf.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gai, P.L., Sharma, R. & Ross, F.M. Environmental (S)TEM Studies of Gas–Liquid–Solid Interactions under Reaction Conditions. MRS Bulletin 33, 107–114 (2008). https://doi.org/10.1557/mrs2008.23

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2008.23

Navigation