Skip to main content
Log in

Strongly Correlated Electronic Materials: Present and Future

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

In complex transition-metal oxides, the interactions between the electronic spins, charges, and orbitals produce a rich variety of electronic phases. The competition and/or cooperation among these correlated-electron phases can lead to the emergence of surprising electronic phenomena and functionalities and form the basis for a new type of electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Tokura, N. Nagaosa, Science 288, 462 (2000).

    Google Scholar 

  2. E. Dagotto, Science 309, 257 (2005).

    Google Scholar 

  3. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

    Google Scholar 

  4. Committee on CMMP 2010, Condensed-Matter and Materials Physics: The Science of the World Around Us (National Academies Press, Washington, DC, 2007).

    Google Scholar 

  5. Basic Energy Sciences Advisory Committee (BESAC) Grand Challenges Subcommittee, Directing Matter and Energy: Five Challenges for Science and the Imagination, (U.S. Department of Energy, Washington, DC, 2007).

    Google Scholar 

  6. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).

    Google Scholar 

  7. J.B. Torrance, P. Lacorre, A.I. Nazzal, E.J. Ansaldo, Ch. Niedermayer, Phys. Rev. B 45, 8209 (1992).

    Google Scholar 

  8. Y. Tokura, Y. Taguchi, Y. Fujishima, T. Arima, K. Kumagai, Y. Iye, Phys. Rev. Lett. 70, 2126 (1993).

    Google Scholar 

  9. H. Sawada, N. Hamada, K. Terakura, K.T. Asada, Phys. Rev. B 53, 12742 (1996).

    Google Scholar 

  10. J. Kanamori, J. Phys. Chem. Solids 10, 87 (1959).

    Google Scholar 

  11. A. Moreira dos Santos, A.K. Cheetham, T. Atou, Y. Shono, Y. Yamaguchi, K. Ohyama, H. Chiba, C.N.R. Rao, Phys. Rev. B 66, 064425 (2002).

    Google Scholar 

  12. C.H. Chen, S.-W. Cheong, A.S. Cooper, Phys. Rev. Lett. 71, 2461 (1993).

    Google Scholar 

  13. J.M. Tranquada, B.J. Sternlieb, J.D. Axe, Y. Nakamura, S. Uchida, Nature 375, 561 (1995).

    Google Scholar 

  14. S.A. Kivelson, E. Fradkin, V.J. Emery, Nature 393, 550 (1998).

    Google Scholar 

  15. Y. Murakami, H. Kawada, H. Kawata, M. Tanaka, T. Arima, Y. Moritomo, Y. Tokura, Phys. Rev. Lett. 80, 1932 (1998).

    Google Scholar 

  16. J.F. Mitchell, D.N. Argyriou, A. Berger, K.E. Gray, R. Osborn, U. Welp, J. Phys. Chem. B 105, 10731 (2001).

    Google Scholar 

  17. S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Science 264, 413 (1994).

    Google Scholar 

  18. E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344, 1 (2001).

    Google Scholar 

  19. C. Sen, G. Alvarez, E. Dagotto, Phys. Rev. Lett. 98, 127202 (2007) and references therein.

    Google Scholar 

  20. S. Kumar, P. Majumdar, Phys. Rev. Lett. 96, 016602 (2006).

    Google Scholar 

  21. D. Akahoshi, M. Uchida, Y. Tomioka, T. Arima, Y. Matsui, Y. Tokura, Phys. Rev. Lett. 90, 177203 (2003).

    Google Scholar 

  22. G. Alvarez, M. Mayr, A. Moreo, E. Dagotto, Phys. Rev. B 71, 014514 (2005).

    Google Scholar 

  23. G. Alvarez, E. Dagotto, arXiv:0802.3394, to appear in Phys. Rev. Lett.

  24. M. Uehara, S. Mori, C.H. Chen, S.-W. Cheong, Nature 399, 560 (1999).

    Google Scholar 

  25. S. Yunoki, J. Hu, A.L. Malvezzi, A. Moreo, N. Furukawa, E. Dagotto, Phys. Rev. Lett. 80, 845 (1998).

    Google Scholar 

  26. K. Gomes, A.N. Pasupathy, A. Pushp, S. Ono, Y. Ando, A. Yazdani, Nature 447, 569 (2007).

    Google Scholar 

  27. H. Yamada, Y. Ogawa, Y. Ishii, H. Sato, M. Kawasaki, H. Akoh, Y. Tokura Science 305, 646 (2004).

    Google Scholar 

  28. A. Ohtomo, H.Y. Hwang, Nature 427, 423 (2004).

    Google Scholar 

  29. N. Reyren, S. Thiel, A.D. Caviglia, L. Fitting Kourkoutis, G. Hammerl, C. Richter, C.W. Schneider, T. Kopp, A.-S. Rüetschi, D. Jaccard, M. Gabay, D.A. Muller, J.-M. Triscone, J. Mannhart, Science 317, 1196 (2007).

    Google Scholar 

  30. S. Okamoto, A. Millis, Nature 428, 630 (2004).

    Google Scholar 

  31. E. Dagotto, Science 318, 1076 (2007).

    Google Scholar 

  32. K.I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, Nature 395, 677 (1998).

    Google Scholar 

  33. H. Katsura, N. Nagaosa, A.V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005).

    Google Scholar 

  34. I.A. Sergienko, E. Dagotto, Phys. Rev. B 73, 094434 (2006).

    Google Scholar 

  35. T. Kimura, T. Goto, H. Sintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55 (2003).

    Google Scholar 

  36. S. Ishiwata, Y. Taguchi, H. Murakawa, Y. Onose, Y. Tokura, Science 319, 1643 (2008).

    Google Scholar 

  37. Y. Tokura, N. Nagaosa, Science 288, 462 (2000).

    Google Scholar 

  38. E. Saitoh, S. Okamoto, K.T. Takahashi, K. Tobe, K. Yamamoto, T. Kimura, S. Ishihara, S. Maekawa, Y. Tokura, Nature 410, 180 (2001).

    Google Scholar 

  39. D. Polli, M. Rini, S. Wall, R.W. Schoenlein, Y. Tomioka, Y. Tokura, A. Cavalleri, Nature Materials 6, 643 (2007).

    Google Scholar 

  40. S.Q. Lu, N.J. Wu, A. Ignatiev, Appl. Phys. Lett. 76, 2749 (2000).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dagotto, E., Tokura, Y. Strongly Correlated Electronic Materials: Present and Future. MRS Bulletin 33, 1037–1045 (2008). https://doi.org/10.1557/mrs2008.223

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2008.223

Navigation