Skip to main content
Log in

Electron-Beam Lithographic Studies of the Scaling of Phase-Change Memory

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Phase-change random-access memory (PCRAM) is a promising technology for future nonvolatile storage with the added potential for possible impact on dynamic random-access memory technologies. To be successful, however, PCRAM must be able to scale to dimensions on the order of a few tens of nanometers, considering the increasingly tiny memory cells that are projected for future technology nodes. The experiments discussed in this article directly address these scaling properties, examining both the materials themselves and the operation of nanoscale devices. One series of experiments is time-resolved x-ray diffraction studies of ultrathin films and nanostructures. Electron-beam lithography was applied to pattern thin films into nanostructures with dimensions down to 20 nm. The article also includes descriptions of prototype PCRAM devices, successfully fabricated and tested down to phase-change material cross sections of 3 nm × 20 nm. The measurements provide a clear demonstration of the excellent scaling potential offered by this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968).

    Google Scholar 

  2. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, J. Appl. Phys. 69, 2849 (1991).

    Google Scholar 

  3. J. Tominaga, T. Kikukawa, M. Takahashi, R.T. Phillips, J. Appl. Phys. 82, 3214 (1997).

    Google Scholar 

  4. A.V. Kolobov, P. Fons, A.I. Frenkel, A.L. Ankudinov, J. Tominaga, T. Uruga, Nat. Mater. 3, 703 (2004).

    Google Scholar 

  5. S. Hudgens, B. Johnson, MRS Bull. 829 (2004).

  6. A. Pirovano, A.L. Lacaita, A. Benvenuti, F. Pellizzer, R. Bez, IEEE Trans. Electron Devices 51, 452 (2004).

    Google Scholar 

  7. D. Adler, H.K. Henisch, N. Mott, Rev. Mod. Phys. 50, 209 (1978).

    Google Scholar 

  8. A. Redaelli, A. Pirovano, F. Pellizzer, A.L. Lacaita, D. Ielmini, R. Bez, IEEE Trans. Electron Devices 25, 684 (2004).

    Google Scholar 

  9. D. Ielmini, A. Lacaita, D. Mantegazza, IEEE Trans. Electron Devices 54, 308 (2007).

    Google Scholar 

  10. A. Pirovano, A.L. Lacaita, F. Pellizzer, S.A. Kostylev, A. Benvenuti, R. Bez, IEEE Trans. Electron Devices 51, 714 (2004).

    Google Scholar 

  11. International Technical Roadmap for Semiconductors, 2006; www.itrs.net/Links/2006Update/2006UpdateFinal.htm.

  12. M.H.R. Lankhorst, B.W.S.M.M. Ketelaars, R.A.M. Wolters, Nat. Mater. 4, 347 (2005).

    Google Scholar 

  13. L. van Pieterson, M.H.R. Lankhorst, M. van Schijndel, A.E.T. Kuiper, J.H.J. Roosen, J. Appl. Phys. 97, 83520 (2005).

    Google Scholar 

  14. L. van Pieterson, M. van Schijndel, J.C.N. Rijpers, Appl. Phys. Lett. 83, 1373 (2003).

    Google Scholar 

  15. E.G. Yeo, L.P. Shi, R. Zhao, T.C. Chong, “Investigation on Ultra-high Density and High Speed Non-volatile Phase Change Random Access Memory (PCRAM) by Material Engineering,” in Mater. Res. Soc. Symp. Proc. 918, P.C. Taylor, A.V. Kolobov, A.H. Edwards, J. Maimon, Eds. ( Materials Research Society, Warrendale, PA, 2006), paper H05-05-G06-05.

    Google Scholar 

  16. S.J. Ahn, Y.J. Song, C.W. Jeong, J.M. Shin, Y. Fai, Y.N. Hwang, S.H. Lee, K.C. Ryoo, S.Y. Lee, J.H. Park, H. Horii, Y.H. Ha, J.H. Yi, B.J. Kuh, G.H. Koh, G.T. Jeong, H.S. Jeong, K. Kin, IEEE Int. Electron Devices Meeting (San Francisco, CA, December 2004), pp. 907–910.

  17. H. Horii, J.H. Yi, J.H. Park, Y.H. Ha, I.G. Baek, S.O. Park, Y.N. Hwang, S.H. Lee, Y.T. Kim, K.H. Lee, U.-I. Chung, J.T. Moon, Symp. VLSI Technol. Dig. Tech. Pap. (Kyoto, Japan, 10–12 June 2003), pp.177–178.

  18. S. Raoux, M. Salinga, J. Jordan-Sweet, A. Kellock, J. Appl. Phys. 101, 44909 (2007).

    Google Scholar 

  19. M. Chen, K.A. Rubin, R.W. Barton, Appl. Phys. Lett. 49, 502 (1986).

    Google Scholar 

  20. H.B. Chung, K. Shin, J.M. Lee, J. Vac. Sci. Technol. A 25, 48 (2007).

    Google Scholar 

  21. K. Wang, C. Steimer, R. Detemple, D. Wamwangi, M. Wuttig, Appl. Phys. A 81, 1601 (2005).

    Google Scholar 

  22. S.M. Yoon, N.Y. Lee, S.O. Ryu, K.J. Choi, Y.S. Park, S.Y. Lee, B.G. Yu, M.J. Kang, S.Y. Choi, M. Wuttig, IEEE Electron Device Lett. 27, 445 (2006).

    Google Scholar 

  23. H. Iwasaki, M. Harigaya, O. Nonoyama, Y. Kageyama, M. Takahashi, K. Yamada, H. Deguchi, Y. Ide, Jpn. J. Appl. Phys. 32, 5241 (1993).

    Google Scholar 

  24. S. Raoux, C.T. Rettner, J. Jordan-Sweet, V.R. Deline, J.B. Philipp, H.-L. Lung, Proc. Eur. Symp. Phase Change Ovonic Sci. (Grenoble, France, May 2006), pp. 127–134.

  25. H. Satoh, K. Sugawara, K. Tanaka, J. Appl. Phys. 99, 024306 (2006).

    Google Scholar 

  26. H.F. Hamann, M. O’Boyle, Y.C. Martin, M. Rooks, H.K. Wickramasinghe, Nat. Mater. 5, 383 (2006).

    Google Scholar 

  27. T. Gotoh, K. Sugawara, K. Tanaka, Jpn. J. Appl. Phys. 43, L818 (2004).

    Google Scholar 

  28. X. Wei, L. Shi, T.C. Chong, R. Zhao, H.K. Lee, Jpn. J. Appl. Phys. 46, 2211 (2007).

    Google Scholar 

  29. Y. Jung, S.-H. Lee, D.-K. Ko, R. Agarwal, J. Am. Chem. Soc. 128, 14026 (2006).

    Google Scholar 

  30. S.-H. Lee, D.-k. Ko, Y. Jung, R. Agarwal, Appl. Phys. Lett. 89, 223116 (2006).

    Google Scholar 

  31. X. Sun, B. Yu, M. Meyyappan, Appl. Phys. Lett. 90, 183116 (2007).

    Google Scholar 

  32. S. Meister, H. Peng, K. McIlwrath, K. Jarausch, X.F. Zhang, Y. Cui, Nano Lett. 6, 1514 (2006).

    Google Scholar 

  33. X. Sun, B. Yu, G. Ng, T.D. Nguyen, M. Meyyappan, Appl. Phys. Lett. 89, 233121 (2006).

    Google Scholar 

  34. D.S. Suh, E. Lee, K.H.P. Kim, J.S. Noh, W.C. Shin, Y.S. Kang, C. Kim, Y. Khang, H.R. Yoon, W. Jo, Appl. Phys. Lett. 90, 023101 (2007).

    Google Scholar 

  35. B.F. Soares, F. Jonson, N.I. Zheludev, Phys. Rev. Lett. 98, 153905 (2007).

    Google Scholar 

  36. H.S. Choi, K.S. Seol, K. Takeuchi, J. Fujita, Y. Ohki, Jpn. J. Appl. Phys. 44, 7720 (2005).

    Google Scholar 

  37. H.R. Yoon, W. Jo, E.H. Lee, J.H. Lee, M. Kim, K.Y. Lee, Y. Khang, J. Non-Cryst. Solids 351, 3430 (2005).

    Google Scholar 

  38. Y. Zhang, H.-S.P. Wong, S. Raoux, J.N. Cha, C.T. Rettner, L.E. Krupp, T. Topuria, D.J. Milliron, P.M. Rice, J. Jordan-Sweet, Appl. Phys. Lett. 91, 13104 (2007).

    Google Scholar 

  39. J.N. Cha, Y. Zhang, H.-S.P. Wong, S. Raoux, C. Rettner, L. Krupp, V. Deline, Chem. Mater. 19, 839 (2007).

    Google Scholar 

  40. S. Raoux, Y. Zhang, D. Milliron, J. Cha, M. Caldwell, C.T. Rettner, J. Jordan-Sweet, H.S.P. Wong, Proc. Eur. Symp. Phase Change Ovonic Sci. (Zermatt, Switzerland, September 2007), Paper no. F01-19.

  41. S. Raoux, C.T. Rettner, J.L. Jordan-Sweet, A.J. Kellock, T. Topuria, P.M. Rice, D.C. Miller, J. Appl. Phys. 102, 94305 (2007).

    Google Scholar 

  42. S. Raoux, C.T. Rettner, J.L. Jordan-Sweet, M. Salinga, M. Toney, Proc. Eur. Symp. Phase Change Ovonic Sci. (Cambridge, UK, 2005), Paper no. 14.

  43. S. Raoux, J.L. Jordan-Sweet, A.J. Kellock, J. Appl. Phys. 103, 114310 (2008).

    Google Scholar 

  44. I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, M. Wuttig, J. Appl. Phys. 87, 4130 (2000).

    Google Scholar 

  45. S. Lai, T. Lowrey, International Electron Devices Meeting, Technical Digest Washington, DC, 2–5 December 2001, pp. 3651–3654.

  46. A. Pirovano, A.L. Lacaita, A. Benvenuti, F. Pellizzer, S. Hudgens, R. Bez, IEDM Tech. Dig. 699 (2003).

  47. Y.C. Chen, C.T. Rettner, S. Raoux, G.W. Burr, S.H. Chen, R.M. Shelby, M. Salinga, W.P. Risk, T.D. Happ, G.M. McClelland, M. Breitwisch, A. Schrott, J.B. Philipp, M.H. Lee, R. Cheek, T. Nirschl, M. Lamorey, C.F. Chen, E. Joseph, S. Zaidi, B. Yee, H.L. Lung, R. Bergmann, C. Lam, IEDM Tech. Dig. 777–780, S30P3 (2006).

    Google Scholar 

  48. M. Salinga, PhD thesis, Technical University Aachen, Aachen, Germany, June 2008.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raoux, S., Rettner, C.T., Chen, YC. et al. Electron-Beam Lithographic Studies of the Scaling of Phase-Change Memory. MRS Bulletin 33, 847–853 (2008). https://doi.org/10.1557/mrs2008.180

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2008.180

Navigation