Skip to main content
Log in

Superhydrophobicity and Contact-Line Issues

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The wettability of several superhydrophobic surfaces that were prepared recently by simple, mostly single-step methods is described and compared with the wettability of surfaces that are less hydrophobic. We explain why two length scales of topography can be important for controlling the hydrophobicity of some surfaces (the lotus effect). Contact-angle hysteresis (difference between the advancing, θA, and receding, θR, contact angles) is discussed and explained, particularly with regard to its contribution to water repellency. Perfect hydrophobicity (θAR = 180°/180°) and a method for distinguishing perfectly hydrophobic surfaces from those that are almost perfectly hydrophobic are described and discussed. The Wenzel and Cassie theories, both of which involve analysis of interfacial (solid/liquid) areas and not contact lines, are criticized. Each of these related topics is addressed from the perspective of the three-phase (solid/liquid/vapor) contact line and its dynamics. The energy barriers for movement of the three-phase contact line from one metastable state to another control contact-angle hysteresis and, thus, water repellency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Netherlands)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F.A. Gould, Ed., Advances in Chemistry Series, Vol. 43, Contact Angle, Wettability and Adhesion (American Chemical Society, Washington, DC, 1964).

  2. W. Chen, A.Y. Fadeev, M.C. Hsieh, D. Öner, J. Youngblood, T.J. McCarthy, Langmuir 15, 3395 (1999).

    Google Scholar 

  3. K.A. Wier, L. Gao, T.J. McCarthy, Langmuir 22, 4914 (2006).

    Google Scholar 

  4. J.P. Youngblood, T.J. McCarthy, Macromolecules 32, 6800 (1999).

    Google Scholar 

  5. R.N. Wenzel, Ind. Eng. Chem. 28, 988 (1936).

    Google Scholar 

  6. A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944).

    Google Scholar 

  7. L. Gao, T.J. McCarthy, Langmuir 23, 3762 (2007).

    Google Scholar 

  8. S. Wang, L. Jiang, Adv. Mater. 19, 3423 (2007).

    Google Scholar 

  9. X. Feng, L. Jiang, Adv. Mater. 18, 3063 (2006).

    Google Scholar 

  10. J. Genzer, K. Efimenko, Biofouling 22, 339 (2006).

    Google Scholar 

  11. D. Quéré, Rep. Prog. Phys. 68, 2495 (2005).

    Google Scholar 

  12. M. Ma, R.M. Hill, Curr. Opin. Colloid Interface Sci. 11, 193 (2006).

    Google Scholar 

  13. This material is marketed as Cefral V and was obtained from Central Glass Co., Ltd., Kowa-Hitotsubashi Building, Kanda- Nishikicho 3-Chrome, Chiyoda-Ku, Tokyo 101, Japan; www.cgco.co.jp/english.

  14. L. Gao, T.J. McCarthy, Langmuir 23, 9125 (2007).

    Google Scholar 

  15. W.I. Patnode, U.S. Patent 2,306,222, December 22, 1942.

    Google Scholar 

  16. F.J. Norton, U.S. Patent 2,412,470, December 10, 1946.

    Google Scholar 

  17. J.F. Hyde, U.S. Patent 2,439,689, April 13, 1948.

    Google Scholar 

  18. L. Gao, T.J. McCarthy, J. Am. Chem. Soc. 129, 3804 (2007).

    Google Scholar 

  19. L. Gao, T.J. McCarthy, Langmuir 24, 362 (2008).

    Google Scholar 

  20. H.A. Schuyten, D.J. Reid, J.W. Weaver, J.G. Frick, Text. Res. J. 18, 396 (1948).

    Google Scholar 

  21. H.A. Schuyten, D.J. Reid, J.W. Weaver, J.G. Frick, Text. Res. J. 18, 490 (1948).

    Google Scholar 

  22. L. Gao, T.J. McCarthy, Langmuir 22, 5998 (2006).

    Google Scholar 

  23. F.J. Norton, U.S. Patent 2,386,259, October 9, 1945.

    Google Scholar 

  24. L. Gao, T.J. McCarthy, Langmuir 22, 2966 (2006).

    Google Scholar 

  25. D. Öner, T.J. McCarthy, Langmuir 16, 7777 (2000).

    Google Scholar 

  26. A.Y. Fadeev, T.J. McCarthy, Langmuir 16, 7268 (2000).

    Google Scholar 

  27. D.C. Pease, J. Phys. Chem. 49, 107 (1945).

    Google Scholar 

  28. F.E. Bartell, J.W. Shepard, J. Phys. Chem. 57, 455 (1953).

    Google Scholar 

  29. C.W. Extrand, Langmuir 19, 3793 (2003).

    Google Scholar 

  30. L. Gao, T.J. McCarthy, Langmuir 22, 6234 (2006).

    Google Scholar 

  31. A.Y. Fadeev, T.J. McCarthy, Langmuir 15, 7238 (1999).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, L., Fadeev, A.Y. & McCarthy, T.J. Superhydrophobicity and Contact-Line Issues. MRS Bulletin 33, 747–751 (2008). https://doi.org/10.1557/mrs2008.160

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2008.160

Navigation