Skip to main content
Log in

3DXRD Characterization and Modeling of Solid-State Transformation Processes

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Three-dimensional x-ray diffraction (3DXRD) allows nondestructive characterization of grains, orientations, and stresses in bulk microstructures and, therefore, enables in situ studies of the structural dynamics during processing. The method is described briefly, and its potential for providing new data valuable for validation of various models of microstructural evolution is discussed. Examples of 3DXRD measurements related to recrystallization and to solid-state phase transformations in metals are described. 3DXRD measurements have led to new modeling activity predicting the evolution of metallic microstructures with much more detail than hitherto possible. Among these modeling activities are three-dimensional (3D) geometric modeling, 3D molecular dynamics modeling, 3D phase-field modeling, two-dimensional (2D) cellular automata, and 2D Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Furuhara, T. Shinyoshi, G. Miyamoto, J. Yamaguchi, N. Sugita, N. Kimura, N. Takemura, T. Maki, ISIJ Int. 43, 2028 (2003).

    Google Scholar 

  2. Yu. Ivanisenko, I. MacLaren, X. Sauvage, R.Z. Valiev, H.-J. Fecht, Acta Mater. 54, 1659 (2006).

    Google Scholar 

  3. W.T. Reynolds, Jr., S.S. Brenner, H.I. Aaronson, Scripta Metall. 22, 1343 (1988).

    Google Scholar 

  4. E.V. Pereloma, I.B. Timokhina, M.K. Miller, P.D. Hodgson, Acta Mater. 55, 2587 (2007).

    Google Scholar 

  5. W.F. Lange, M. Enomoto, H.I. Aaronson, Metall. Trans. A 19, 427 (1988).

    Google Scholar 

  6. Y. Adachi, K. Hakata, K. Tsuzaki, Mater. Sci. Eng. A 412, 252 (2005).

    Google Scholar 

  7. H. Landheer, S.E. Offerman, R.H. Petrov, L.A.I. Kestens, Mater. Sci. Forum 558–559, 1413 (2007).

    Google Scholar 

  8. A.F. Gourgues-Lorenzon, Int. Mater. Rev. 52, 65 (2007).

    Google Scholar 

  9. H.F. Poulsen, S. Garbe, T. Lorentzen, D. Juul Jensen, F.W. Poulsen, N.H. Andersen, T. Frello, R. Feidenhansl, H. Graafsma, J. Synchrotron Radiat. 4, 147 (1997).

    Google Scholar 

  10. E.M. Lauridsen, D. Juul Jensen, H.F. Poulsen, U. Lienert, Scripta Mater. 43, 561 (2000).

    Google Scholar 

  11. L. Margulies, G. Winther, H.F. Poulsen, Science 291, 2392 (2001).

    Google Scholar 

  12. S.E. Offerman, N.H. van Dijk, J. Sietsma, S. Grigull, E.M. Lauridsen, L. Margulies, H.F. Poulsen, M.T. Rekveldt, S. van der Zwaag, Science 298, 1003 (2002).

    Google Scholar 

  13. E.M. Lauridsen, H.F. Poulsen, S.F. Nielsen, D. Juul Jensen, Acta Mater. 51, 4423 (2003).

    Google Scholar 

  14. H.F. Poulsen, Three-Dimensional X-Ray Diffraction Microscopy—Mapping Polycrystals and Their Dynamics (Springer, Berlin, 2004).

    Google Scholar 

  15. S. Schmidt, S.F. Nielsen, C. Gundlach, L. Margulies, X. Huang, D. Juul Jensen, Science 305, 229 (2004).

    Google Scholar 

  16. D. Juul Jensen, H.F. Poulsen, Å. Kvik, Encyclopedia of Materials: Science and Technology, Updates (Elsevier, Oxford, UK, 2005), pp. 1–6.

    Google Scholar 

  17. B. Jakobsen, H.F. Poulsen, U. Lienert, J. Almer, S.D. Shastri, H.O. Sorensen, C. Gundlach, W. Pantleon, Science 312, 889 (2006).

    Google Scholar 

  18. W. Pantleon, H.F. Poulsen, J. Almer, U. Lienert, Mater. Sci. Eng. A 387, 339 (2004).

    Google Scholar 

  19. N. Iqbal, N.H. van Dijk, S.E. Offerman, M.P. Moret, L. Katgerman, G.J. Kearley, Acta Mater. 53, 2875 (2005).

    Google Scholar 

  20. E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, S. van der Zwaag, Scripta Mater. 56, 421 (2007).

    Google Scholar 

  21. J. Banhart, Ed., Advanced Tomographic Methods in Materials Research and Engineering (Oxford University Press, Oxford, UK, 2008).

  22. G.E. Ice, Mater. World 8 (5), 20 (2000).

    Google Scholar 

  23. B.C. Larson, W. Yang, G.E. Ice, J.D. Budai, J.Z. Tischler, Nature 415, 887 (2002).

    Google Scholar 

  24. H.J. Bunge, L. Wcislak, H. Klein, U. Garbe, J.R. Schneider, Adv. Eng. Mater. 4, 300 (2002).

    Google Scholar 

  25. H.J. Bunge, Textures Microstruct. 35, 253 (2003).

    Google Scholar 

  26. A. Preusser, H. Klein, H.J. Bunge, Solid State Phenom. 105, 3 (2005).

    Google Scholar 

  27. M. Avrami, J. Chem. Phys. 7, 1103 (1939).

    Google Scholar 

  28. R.A. Vandermeer, Kinetic aspects of nucleation and growth in recrystallization N. Hansen, X. Huang, D. Juul Jensen, E.M. Lauridsen, T. Leffers, W. Pantleon, T.J. Sabin, J.A. Wert, Eds. (Risø National Laboratory, Roskilde, Denmark, 2000), p. 179.

    Google Scholar 

  29. R.B. Godiksen, S. Schmidt, D. Juul Jensen, Scripta Mater. 57, 345 (2007).

    Google Scholar 

  30. M.A. Martorano, M.A. Fortes, A.F. Padilha, Acta Mater. 54, 2769 (2006).

    Google Scholar 

  31. R.B. Godiksen, Z.T. Trautt, M. Upmanyu, J. Schiøtz, D. Juul Jensen, S. Schmidt, Acta Mater. 55, 6383 (2007).

    Google Scholar 

  32. D. Juul Jensen, D.J. Rowenhorst, S. Schmidt, Misorientation aspects of growth during recrystallization S.-J.L. Kang, M.Y. Huh, N.M. Hwan, H. Homma, K. Ushioda, Y. Ikuhara, Eds. (Trans Tech Publications Ltd., Zurich, Switzerland, 2007), p. 85.

    Google Scholar 

  33. S.E. Offerman, Science 305, 190 (2004).

    Google Scholar 

  34. S.E. Offerman, N.H. van Dijk, J. Sietsma, S. van der Zwaag, E.M. Lauridsen, L. Margulies, S. Grigull, H.F. Poulsen, Scripta Mater. 51, 937 (2004).

    Google Scholar 

  35. S.E. Offerman, N.H. van Dijk, J. Sietsma, E.M. Lauridsen, L. Margulies, S. Grigull, H.F. Poulsen, S. van der Zwaag, Acta Mater. 52, 4757 (2004).

    Google Scholar 

  36. S.E. Offerman, N.H. van Dijk, J. Sietsma, E.M. Lauridsen, L. Margulies, S. Grigull, H.F. Poulsen, S. van der Zwaag, Nucl. Instrum. Methods Phys. Res., Sect. B 246, 194 (2006).

    Google Scholar 

  37. S.E. Offerman, H. Strandlund, N.H. van Dijk, J. Sietsma, E.M. Lauridsen, L. Margulies, H.F. Poulsen, J. Ågren, S. van der Zwaag, Mater. Sci. Forum 550, 357 (2007).

    Google Scholar 

  38. C.E. Krill, L. Helfen, D. Michels, H. Natter, A. Fitch, O. Masson, R. Birringer, Phys. Rev. Lett. 86, 842 (2001).

    Google Scholar 

  39. N.H. van Dijk, S.E. Offerman, J. Sietsma, S. van der Zwaag, Acta Mater. 55, 4489 (2007).

    Google Scholar 

  40. M.G. Mecozzi, J. Sietsma, S. van der Zwaag, Acta Mater. 54, 1431 (2006).

    Google Scholar 

  41. M. Militzer, M.G. Mecozzi, J. Sietsma, S. van der Zwaag, Acta Mater. 54, 3961 (2006).

    Google Scholar 

  42. C. Zener, J. Appl. Phys. 20, 950 (1949).

    Google Scholar 

  43. D.Z. Li, N.M. Xiao, Y.J. Lan, C.W. Zheng, Y.Y. Li, Acta Mater. 55, 6234 (2007).

    Google Scholar 

  44. B. Devincre, L. Kubin, T. Hoc, Scipta Mater. 54, 741 (2006).

    Google Scholar 

  45. V.V. Bulatov, L.L. Hsiung, M. Tang, A. Arsenlis, M. C. Bartelt, W. Cai, J. N. Florando, M. Hiratani, M. Rhee, G. Hommes, T. G. Pierce, T. Diaz de la Rubia, Nature 440, 1174 (2006).

    Google Scholar 

  46. D. Raabe, F. Roters, F. Barlat, L.Q. Chen, Eds., Continuum Scale Simulation of Engineering Materials: Fundamentals—Microstructures— Process Applications (Wiley-VCH, Weinheim, Germany, 2004).

  47. N.M. Ghoniem, Ed., Proceedings of the Second International Conference on Multiscale Materials Modeling (UCLA Publications, Los Angeles, CA, 2004).

  48. K. Thornton, J. Ågren, P.W. Voorhees, Acta Mater. 51, 5675 (2003).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, D.J., Offerman, S.E. & Sietsma, J. 3DXRD Characterization and Modeling of Solid-State Transformation Processes. MRS Bulletin 33, 621–629 (2008). https://doi.org/10.1557/mrs2008.127

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2008.127

Navigation