Skip to main content
Log in

Fundamentals of Focused Ion Beam Nanostructural Processing: Below, At, and Above the Surface

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article considers the fundamentals of what happens in a solid when it is impacted by a medium-energy gallium ion. The study of the ion/sample interaction at the nanometer scale is applicable to most focused ion beam (FIB)–based work even if the FIB/sample interaction is only a step in the process, for example, micromachining or microelectronics device processing. Whereas the objective in other articles in this issue is to use the FIB tool to characterize a material or to machine a device or transmission electron microscopy sample, the goal of the FIB in this article is to have the FIB/sample interaction itself become the product. To that end, the FIB/sample interaction is considered in three categories according to geometry: below, at, and above the surface. First, the FIB ions can penetrate the top atom layer(s) and interact below the surface. Ion implantation and ion damage on flat surfaces have been comprehensively examined; however, FIB applications require the further investigation of high doses in three-dimensional profiles. Second, the ions can interact at the surface, where a morphological instability can lead to ripples and surface self-organization, which can depend on boundary conditions for site-specific and compound FIB processing. Third, the FIB may interact above the surface (and/or produce secondary particles that interact above the surface). Such ion beam–assisted deposition, FIB–CVD (chemical vapor deposition), offers an elaborate complexity in three dimensions with an FIB using a gas injection system. At the nanometer scale, these three regimes—below, at, and above the surface—can require an interdependent understanding to be judiciously controlled by the FIB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Orloff, M. Utlaut, L. Swanson, High Resolution FIB and its Applications (Kluwer Academic/Plenum, New York, 2003).

    Book  Google Scholar 

  2. L.A. Giannuzzi, F.A. Stevie, Introduction to FIB (Springer, New York, 2005).

    Google Scholar 

  3. See the introductory article by C.A. Volkert and A.M. Minor in this issue.

  4. E. Chason et al., Appl. Phys. Rev. 81 (10), 6513 (1997).

    Article  CAS  Google Scholar 

  5. Q. Ji et al., Nucl. Instrum. Methods Phys. Res. Sect. B 241, 335 (2005).

    Article  CAS  Google Scholar 

  6. See the article by R. Langford et al. in this issue.

  7. J.F. Ziegler, SRIM (2006), http://www.srim.org.

  8. H. Ryssel, I. Ruge, Ion Implantation (Wiley, New York, 1986).

    Google Scholar 

  9. H. Cerva, G. Hobler, J. Electrochem. Soc. 139 (12), 3631 (1992).

    Article  CAS  Google Scholar 

  10. W. Möller, M. Posselt, TRIDYN_FZR User Manual (Forschungszentrum Rossendorf, Dresden, Germany).

  11. L.A. Giannuzzi, Microsc. Microanal. 12 (2), 1260 (2006).

    Article  Google Scholar 

  12. D.P. Adams, M.J. Vasile, J. Vac. Sci. Technol., B 24 (2), 836 (2006).

    Article  CAS  Google Scholar 

  13. A. Lugstein, W. Brezna, G. Hobler, E. Bertagnolli, J. Vac. Sci. Technol., A 21, 1644 (2003).

    Article  CAS  Google Scholar 

  14. G. Hobler, A. Lugstein, W. Brezna, E. Bertagnolli, in Mater. Res. Soc. Symp. Proc. 792, L.-M. Wang et al., Eds. (Warrendale, PA, 2003) pp. 635–640.

    Google Scholar 

  15. H.B. Kim, G. Hobler, A. Lugstein, E. Bertagnolli, J. Micromech. Microeng. (2007) in press.

  16. W. Boxleitner, G. Hobler, Nucl. Instrum. Methods Phys. Res., Sect. B 180, 125 (2001).

    Article  CAS  Google Scholar 

  17. T. Shinada, S. Okamoto, T. Kobayashi, I. Ohdomari, Nature 437, 1128 (2005).

    Article  CAS  Google Scholar 

  18. T. Schenkel, Nature Mater. 4, 799 (2005).

    Article  CAS  Google Scholar 

  19. B.E. Kane, Nature 393, 133 (1998).

    Article  CAS  Google Scholar 

  20. T. Schenkel et al., Appl. Phys. Lett. 88, 112101 (2006).

    Article  CAS  Google Scholar 

  21. R.G. Clark et al., Philos. Trans. R. Soc. London, Ser. A, 361, 1451 (2003).

    Article  CAS  Google Scholar 

  22. R.H. Reuss et al., J. Vac. Sci. Technol., B 4, 290 (1986).

    Article  CAS  Google Scholar 

  23. A. Persaud et al., Nano Lett. 5, 1087 (2005).

    Article  CAS  Google Scholar 

  24. T. Schenkel et al., J. Vac. Sci. Technol., B 21, 2720 (2003).

    Article  CAS  Google Scholar 

  25. R.A. Baragiola, Nucl. Instrum. Methods Phys. Res. B 78, 223 (1993).

    Article  Google Scholar 

  26. T. Schenkel et al., Microelectron. Eng. 8, 1814 (2006).

    Article  CAS  Google Scholar 

  27. D.N. Jamieson et al., Appl. Phys. Lett. 86, 202101 (2005).

    Article  CAS  Google Scholar 

  28. P. Sigmund, J. Mater. Sci. 8, 1545 (1973).

    Article  CAS  Google Scholar 

  29. B.R. Appleton et al., Appl. Phys. Lett. 41 (8), 711 (1982).

    Article  CAS  Google Scholar 

  30. F.A. Stevie, P.M. Kahora, D.S. Simons, P. Chi, J. Vac. Sci. Technol., A 6, 76 (1988).

    Article  CAS  Google Scholar 

  31. R.M. Bradley, J.M.E. Harper, J. Vac. Sci. Technol., A 6, 2390 (1988).

    Article  CAS  Google Scholar 

  32. T.M. Mayer, E. Chason, A.J. Howard, J. Appl. Phys. 76 (3), 1634 (1994).

    Article  Google Scholar 

  33. G. Carter, V. Vishnyakov, Phys. Rev. B 54, 17647 (1996).

    Article  CAS  Google Scholar 

  34. S. Facsko et al., Science 285, 1551 (1999).

    Article  CAS  Google Scholar 

  35. J. Erlebacher et al., Phys. Rev. Lett. 82 (11), 2330 (1999).

    Article  CAS  Google Scholar 

  36. A. Datta, Y.R. Wu, Y.L. Wang, Phys. Rev. B 63, 125407 (2001).

    Article  CAS  Google Scholar 

  37. S. Habenicht, K.P. Lieb, J. Koch, A.D. Wieck, Phys. Rev. B 65, 115327 (2002).

    Article  CAS  Google Scholar 

  38. W.L Chan, N. Pavenayotin, E. Chason, Phys. Rev. B 69, 245413 (2004).

    Article  CAS  Google Scholar 

  39. S. Ichim, M.J. Aziz, J. Vac. Sci. Technol., B 23, 1068 (2005).

    Article  CAS  Google Scholar 

  40. T.M. Mayer, D.P. Adams, M.J. Vasile, K.M. Archuleta, J. Vac. Sci. Technol., A 23, 1579 (2005).

    Article  CAS  Google Scholar 

  41. J.L. Gray, S. Atha, R. Hull, J.A. Floro, Nano Lett. 4 (12), 2447 (2004).

    Article  CAS  Google Scholar 

  42. M.J. Aziz, Mat. Fys. Medd. Dan Vid Selsk (2006) in press.

  43. M.A. Makeev, R. Cuerno, A.L. Barabasi, Nucl. Instrum. Methods Phys. Res., Sect. B 197, 185 (2002).

    Article  CAS  Google Scholar 

  44. R. Levi-Setti, T.R. Fox, K. Lam, Nucl. Instr. Meth. 205, 299 (1983).

    Article  CAS  Google Scholar 

  45. B.W. Kempshall et al., J. Vac. Sci. Technol., B 19, 729 (2001).

    Article  CAS  Google Scholar 

  46. M. Castro, R. Cuerno, L. Vazquez, R. Gago, Phys. Rev. Lett. 94, 016102 (2005).

    Article  CAS  Google Scholar 

  47. H.H. Chen et al., Science 310, 294 (2005).

    Article  CAS  Google Scholar 

  48. J. Teichert, L. Bischoff, B. Kohler, Appl. Phys. Lett. 69 (11), 1544 (1996).

    Article  CAS  Google Scholar 

  49. A. Cuenat, M.J. Aziz, in Mater. Res. Soc. Symp. Proc. 696, E.A. Stach, E.H. Chason, R. Hull, S.D. Bader, Eds. (2002) pp. 31–36.

  50. W.J. MoberlyChan, T.E. Felter, M.A. Wall, Microsc. Today, 28 (November 2006).

  51. D. Santamore, K. Edinger, J. Orloff, J. Melngailis, J. Vac. Sci. Technol., B 15, 2346 (1997).

    Article  CAS  Google Scholar 

  52. A. Cuenat, Adv. Mater. 17, 2845 (2005).

    Article  CAS  Google Scholar 

  53. D.P. Adams, M.J. Vasile, T.M. Mayer, V.C. Hodges, J. Vac. Sci. Technol., B 21, 2334 (2003).

    Article  CAS  Google Scholar 

  54. U. Wendt, G. Nolze, H. Heyse, Microsc. Microanal. 12 (suppl. 2), 1302 (2006).

    Article  Google Scholar 

  55. W.J. MoberlyChan, S. Reyntjens, A.M. Minor, Microsc. Microanal. 12 (suppl. 2), 1268 (2006).

    Article  Google Scholar 

  56. U. Valbusa, C. Boragno, F. Buatier de Mongeot, J. Phys.: Condens. Matter 14, 8153 (2002).

    Google Scholar 

  57. A.D. Brown, J. Erlebacher, W.L. Chan, E. Chason, Phys. Rev. Lett. 95, 056101 (2005).

    Article  CAS  Google Scholar 

  58. A. Stanishevsky, Thin Solid Films 398–399, 560 (2001).

    Article  Google Scholar 

  59. D.P. Adams, T.M. Mayer, M.J. Vasile, K. Archuleta, Appl. Surf. Sci. 252, 2432 (2006).

    Article  CAS  Google Scholar 

  60. P.E. Russell et al., J. Vac. Sci. Technol., B 16 (4), 2494 (1998).

    Article  CAS  Google Scholar 

  61. G. Carter, J. Appl. Phys. 85 (1), 455 (1999).

    Article  CAS  Google Scholar 

  62. A. Lugstein, B. Basnor, E. Bertagnolli, J. Vac. Sci. Technol., B 20, 2238 (2002).

    Article  CAS  Google Scholar 

  63. W.J. MoberlyChan, Mater. Res. Soc. Symp. Proc. 960, N10-02 (2006).

    Article  Google Scholar 

  64. D.P. Adams, M.J. Vasile, T.M. Mayer, J. Vac. Sci. Technol., B 24 (4), 1766 (2006).

    Article  CAS  Google Scholar 

  65. T. Ishitani, T. Yaguchi, Microsc. Res. Technol. 35, 320 (1996).

    Article  CAS  Google Scholar 

  66. T. Ihsitani, T. Ohnishi, J. Vac. Sci. Technol., A 9, 3084 (1991).

    Article  Google Scholar 

  67. M.J. Vasile, J. Xie, R. Nassar, J. Vac. Sci. Technol., B 17 (6), 3085 (1999).

    Article  CAS  Google Scholar 

  68. S. Facsko et al., Phys. Rev. B 69, 153412 (2004).

    Article  CAS  Google Scholar 

  69. M.A. Karolewski, Nucl. Instrum. Methods Phys. Res., Sect. B 230, 402 (2005); Kalypso software, www.geocities.com/karolewski/ Kalypso.

  70. P. Tosin, A. Blatter, W Luthy. J. Appl. Phys. 76 (6), 3797 (1995).

    Article  Google Scholar 

  71. A.M. Ozhan et al., Appl. Phys. Lett. 75 (23), 3716 (1999).

    Article  Google Scholar 

  72. E. Coyne, J. Magee, P. Mannion, G. O’Connor, Proc. SPIE 4876, 487 (2003).

    Article  Google Scholar 

  73. J.N. Brooks, Fusion Eng. Des. 60, 515 (2002).

    Article  CAS  Google Scholar 

  74. T. Ishitani, H. Koike, T. Yaguchi, T. Kamino, J. Vac. Sci. Technol., B 16 (4), 1907 (1998).

    Article  CAS  Google Scholar 

  75. J.R. Michael, Microsc. Microanal. 12 (2), 1248 (2005).

    Google Scholar 

  76. G. Carter, Vacuum 80, 475 (2006).

    Article  CAS  Google Scholar 

  77. M. Kammler, R. Hull, M.C. Reuter, F.M. Ross, Appl. Phys. Lett. 82, 1903 (2003).

    Article  CAS  Google Scholar 

  78. A.A. Bergman et al., Langmuir 14, 6785 (1998).

    Article  CAS  Google Scholar 

  79. K. Gamo et al., Jpn. J. Appl. Phys. 23, L293 (1984).

    Article  Google Scholar 

  80. G.M. Shedd, H. Lezec, A.D. Dubner, J. Melngailis, Appl. Phys. Lett. 49, 1584 (1986).

    Article  CAS  Google Scholar 

  81. H.C. Kaufmann, W.B. Thompson, G.J. Dunn, Proc. SPIE 632, 60 (1986).

    Article  CAS  Google Scholar 

  82. L.R. Harriott, M.J. Vasile, J. Vac. Sci. Technol., B 6, 1035 (1988).

    Article  CAS  Google Scholar 

  83. R.L. Kubena, F.P. Stratton, T.M. Mayer, J. Vac. Sci. Technol., B 6, 1865 (1988).

    Article  CAS  Google Scholar 

  84. M.E. Gross, L.R. Harriott, R.L. Opila Jr., J. Appl. Phys. 68, 4820 (1990).

    Article  CAS  Google Scholar 

  85. P.G. Blauner, J.S. Ro, Y. Butt, J. Melngailis, J. Vac. Sci. Technol., B 7, 609 (1989).

    Article  CAS  Google Scholar 

  86. R.J. Young, J.R.A. Cleaver, H. Ahmed, J. Vac. Sci. Technol., B 11 (2), 234 (1993).

    Article  CAS  Google Scholar 

  87. J. Funatsu, C.V. Thompson, J. Melngailis, J.N. Walpole, J. Vac. Sci. Technol., B 14, 179(1996).

    Article  CAS  Google Scholar 

  88. M.J. Vasile, L.R. Harriott, J. Vac. Sci. Technol., B 7, 1954 (1989).

    Article  CAS  Google Scholar 

  89. J.S. Ro, C.V. Thompson, J. Melngailis, Thin Solid Films 258, 333 (1995).

    Article  CAS  Google Scholar 

  90. T.P. Chiang, H.H. Sawin, C.V. Thompson, J. Vac. Sci. Technol., A 15, 3104 (1997).

    Article  CAS  Google Scholar 

  91. A.D. Dubner, A. Wagner, J. Melngailis, C.V. Thompson, J. Appl. Phys. 70, 665 (1991).

    Article  CAS  Google Scholar 

  92. J. Melngailis, Proc. SPIE 1465, 36 (1991).

    Article  CAS  Google Scholar 

  93. V. Ray, J. Vac. Sci. Technol., B 22 (6), 3008 (2004).

    Article  CAS  Google Scholar 

  94. T. Ishitani, T. Ohnishi, Y. Kawanami, Jpn. J. Appl. Phys. 29, 2283 (1990).

    Article  CAS  Google Scholar 

  95. M.J. Vasile et al., Rev. Sci. Instrum. 62, 2167 (1991).

    Article  Google Scholar 

  96. See the article by M. Uchic et al. in this issue.

  97. J. Melngailis, J. Vac. Sci. Technol., B 5, 469 (1987).

    Article  CAS  Google Scholar 

  98. L.R. Harriott, Appl. Surf. Sci. 36, 432 (1989).

    Article  Google Scholar 

  99. W.P. Economou, D.C. Shaver, B. Ward, Proc. SPIE 773, 201 (1987).

    Article  CAS  Google Scholar 

  100. M. Yamamoto et al., Proc. SPIE 632, 97 (1986).

    Article  CAS  Google Scholar 

  101. R. Puers, S. Reyntjens, D. De Bruyker, Sens. Actuators, A 97–98, 208 (2002).

    Article  CAS  Google Scholar 

  102. S. Khizroev, J.A. Bain, D. Litvinov, Nanotechnology 13, 619 (2002).

    Article  Google Scholar 

  103. E.M. Ford, H. Ahmed, Appl. Phys. Lett. 75, 421 (1999).

    Article  CAS  Google Scholar 

  104. T.W. Ebbesen et al., Nature 382, 54 (1996).

    Article  CAS  Google Scholar 

  105. A.J. Demarco, J. Melngailis, J. Vac. Sci. Technol., B 17, 3154 (1999).

    Article  CAS  Google Scholar 

  106. T. Morita et al., J. Vac. Sci. Technol., B 21, 2737 (2003).

    Article  CAS  Google Scholar 

  107. R. Kometani et al., Microelectron. Eng. 83, 1642 (2006).

    Article  CAS  Google Scholar 

  108. J.-F. Lin, J.P. Bird, L. Rotkina, P.A. Bennett, Appl. Phys. Lett. 82, 802 (2003).

    Article  CAS  Google Scholar 

  109. E.J. Sanchez, J.T. Krug, X.S. Xie, Rev. Sci. Instrum. 73 (11), 3901 (2002).

    Article  CAS  Google Scholar 

  110. A. Botman, J.J.L. Mulders, R. Weemaes, S. Mentink, Nanotechnology 17, 3779 (2006).

    Article  CAS  Google Scholar 

  111. P.G. Blauner et al., J. Vac. Sci. Technol., B 7, 1816 (1989).

    Article  CAS  Google Scholar 

  112. A.N. Campbell et al., Proc. 23rd Int. Symp. Testing Failure Analysis (1997) p. 223.

  113. K. Edinger, J. Melngailis, J. Orloff, J. Vac. Sci. Technol., B 16, 3311 (1998).

    Article  CAS  Google Scholar 

  114. S. Reyntjens, R. Puers, J. Micromech. Microeng. 10, 181 (2000).

    Article  CAS  Google Scholar 

  115. M. Ishida et al., J. Vac. Sci. Technol., B 21, 2728 (2003).

    Article  CAS  Google Scholar 

  116. K.-I. Nakamatsu et al., J. Vac. Sci. Technol., B 23, 2801 (2005).

    Article  CAS  Google Scholar 

  117. T. Tao, J. Ro, J. Melngailis, J. Vac. Sci. Technol., B 8, 1826 (1990).

    Article  CAS  Google Scholar 

  118. N. Smith et al., J. Vac. Sci. Technol., B 24 (6), 2902 (2006).

    Article  CAS  Google Scholar 

  119. T.M. Mayer, S.D. Allen, Thin Film Processes II, J.L. Vossen, W. Kern, Eds. (Academic Press, New York, 1991) pp. 621–670.

    Chapter  Google Scholar 

  120. FEI Co. SPI-mode technology, www.feico.com.

  121. Zeiss technology, www.smt.zeiss.com/nts.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MoberlyChan, W.J., Adams, D.P., Aziz, M.J. et al. Fundamentals of Focused Ion Beam Nanostructural Processing: Below, At, and Above the Surface. MRS Bulletin 32, 424–432 (2007). https://doi.org/10.1557/mrs2007.66

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2007.66

Navigation