Skip to main content
Log in

Nanowire-Based Nanoelectronic Devices in the Life Sciences

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The interface between nanosystems and biosystems is emerging as one of the broadest and most dynamic areas of science and technology, bringing together biology, chemistry, physics, biotechnology, medicine, and many areas of engineering. The combination of these diverse areas of research promises to yield revolutionary advances in healthcare, medicine, and the life sciences through the creation of new and powerful tools that enable direct, sensitive, and rapid analysis of biological and chemical species. Devices based on nanowires have emerged as one of the most powerful and general platforms for ultrasensitive, direct electrical detection of biological and chemical species and for building functional interfaces to biological systems, including neurons. Here, we discuss representative ex amples of nanowire nanosensors for ultrasensitive detection of proteins and individual virus particles as well as recording, stimulation, and inhibition of neuronal signals in nanowire-neuron hybrid structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.T. Hu, T.W. Odom, and C.M. Lieber, Acc. Chem. Res. 32 (1999) p. 435.

    Google Scholar 

  2. C.M. Lieber, MRS Bull. 28 (July 2003) p. 486.

    Google Scholar 

  3. Y. Li, F. Qian, J. Xiang, and C.M. Lieber, Mater. Today 9 (10) (2006) p. 18.

    Google Scholar 

  4. Z.L. Wang, Mater. Today 7 (6) (2004) p. 26.

    Google Scholar 

  5. L. Samuelson, Mater. Today 6 (10) (2003) p. 22.

    Google Scholar 

  6. P. Yang, MRS Bull. 30 (February 2005) p. 85.

    Google Scholar 

  7. F. Patolsky and C.M. Lieber, Mater. Today 8 (4) (2005) p. 20.

    Google Scholar 

  8. F. Patolsky, G. Zheng, and C.M. Lieber, Anal. Chem. 78 (2006) p. 4261.

    Google Scholar 

  9. F. Patolsky, G. Zheng, and C.M. Lieber, Nanomedicine 1 (2006) p. 51.

    Google Scholar 

  10. A. Morales and C.M. Lieber, Science 279 (1998) p. 208.

    Google Scholar 

  11. Y. Cui, Q. Wei, H. Park, and C.M. Lieber, Science 293 (2001) p. 1289.

    Google Scholar 

  12. J. Hahm and C.M. Lieber, Nano Lett. 4 (2004) p. 51.

    Google Scholar 

  13. W.U. Wang, C. Chen, K.H. Lin, Y. Fang, and C.M. Lieber, Proc. Natl. Acad. Sci. USA 102 (2005) p. 3208.

    Google Scholar 

  14. F. Patolsky, G.F. Zheng, O. Hayden, M. Lakadamyali, X.W. Zhuang, and C.M. Lieber, Proc. Natl. Acad. Sci. USA 101 (2004) p. 14017.

    Google Scholar 

  15. G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, and C.M. Lieber, Nat. Biotechnol. 23 (2005) p. 1294.

    Google Scholar 

  16. Y. Cui and C.M. Lieber, Science 291 (2001) p. 851.

    Google Scholar 

  17. Y. Cui, Z.H. Zhong, D.L. Wang, W.U. Wang, and C.M. Lieber, Nano Lett. 3 (2003) p. 149.

    Google Scholar 

  18. G. Zheng, W. Lu, S. Jin, and C.M. Lieber, Adv. Mater. 16 (2004) p. 1890.

    Google Scholar 

  19. J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, and C.M. Lieber, Nature 441 (2006) p. 489.

    Google Scholar 

  20. S.M. Sze, Physics of Semicondutor Devices (Wiley, New York, 1981).

  21. Y. Huang, X.F. Duan, Q.Q. Wei, and C.M. Lieber, Science 291 (2001) p. 630.

    Google Scholar 

  22. R. Etzioni, N. Urban, S. Ramsey, M. McIntosh, S. Schwartz, B. Reid, and J. Radich, Nat. Rev. Cancer 3 (2003) p. 1.

    Google Scholar 

  23. J.D. Wulfkuhle, L.A. Liotta, and E.F. Petricoin, Nat. Rev. Cancer 3 (2003) p. 267.

    Google Scholar 

  24. U. Windhorst and H. Johansson, Modern Techniques in Neuroscience Research: Electrical Activity of Individual Neurons In Situ: Extra-and Intracellular (Springer, New York, 1999).

    Google Scholar 

  25. P. Fromherz, ChemPhysChem 3 (2002) p. 276.

    Google Scholar 

  26. A.D. Oviedo and J. Reyes, J. Neurosci. 25 (2005) p. 4985.

    Google Scholar 

  27. A. Lambacher, M. Jenkner, M. Merz, B. Eversmann, R.A. Kaul, F. Hofmann, R. Thewes and P. Fromherz., Appl. Phys. A 79 (2004) p. 1607.

    Google Scholar 

  28. A. Offenhausser, C. Sprossler, M. Matsuzawa, and W. Knoll, Biosens. Bioelectron. 12 (1997) p. 819.

    Google Scholar 

  29. M. Merz and P. Fromherz, Adv. Funct. Mater. 15 (2005) p. 739.

    Google Scholar 

  30. M. Voelker and P. Fromherz, Small 1 (2005) p. 206.

    Google Scholar 

  31. C.D. James, A.J.H. Spence, N.M. Dowell-Mesfin, R.J. Hussain, K.L. Smith, and H.G. Craighead, IEEE Trans. Biomed. Eng. 51 (2004) p. 1640.

    Google Scholar 

  32. Y. Jimbo, N. Kasai, K. Torimitsu, T. Tateno, and H.P.C. Robinson, IEEE Trans. Biomed. Eng. 50 (2003) p. 241.

    Google Scholar 

  33. F. Patolsky, B.P. Timko, G. Yu, Y. Fang, A.B. Greytak, G. Zheng, and C.M. Lieber, Science 313 (2006) p. 1100.

    Google Scholar 

  34. S. Jin, D. Whang, M.C. McAlpine, R.S. Friedman, Y. Wu, and C.M. Lieber, Nano Lett. 4 (2004) p. 915.

    Google Scholar 

  35. A.T. Gulledge and G.J. Stuart, J. Neurosci. 23 (2003) p. 11363.

    Google Scholar 

  36. M.E. Larkum and J.J. Zhu, J. Neurosci. 15 (2002) p. 6991.

    Google Scholar 

  37. L.R. Squire, J.L. Roberts, N.C. Spitzer, and M.J. Zigmond, Fundamental Neuroscience (Elsevier Science, San Diego, 2003).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patolsky, F., Timko, B.P., Zheng, G. et al. Nanowire-Based Nanoelectronic Devices in the Life Sciences. MRS Bulletin 32, 142–149 (2007). https://doi.org/10.1557/mrs2007.47

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2007.47

Navigation