Skip to main content

Advertisement

Log in

High-Efficiency Multijunction Solar Cells

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The efficiency of a solar cell can be increased by stacking multiple solar cells with a range of bandgap energies, resulting in a multijunction solar cell with a maximum the oretical efficiency limit of 86.8% III–V compound semiconductors are good candidates for fabricating such multijunction solar cells for two reasons: they can be grown with excellent material quality; and their bandgaps span a wide spectral range, mostly with direct bandgaps, implying a high absorption coefficient. These factors are the reason for the success of this technology, which has achieved 39% efficiency, the highest solar-to-electric conversion efficiency of any photovoltaic device to date. This article explores the materials science of today’s high-efficiency multijunction cells and describes challenges associated with new materials developments and how they may lead to next-generation, multijunction solar cell concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Hering, Photon Int. (July 2005) p. 50.

  2. R.R. King, D.C. Law, C.M. Fetzer, R.A. Sherif, K.M. Edmondson, S. Kurtz, G.S. Kinsey, H.L. Cotal, D.D. Krut, J.H. Ermer, and N.H. Karam, Proc. 20th Eur. Photovoltaic Solar Energy Conf. (Barcelona, Spain, 2005) p. 118.

  3. S.G. Bailey, R. Raffaelle, and K. Emery, Prog. Photovolt. Res. Appl. 10 (2002) p. 399.

    CAS  Google Scholar 

  4. W. Shockley and H.J. Queisser, J. Appl. Phys. 32 (1961) p. 510.

    CAS  Google Scholar 

  5. A. Marti and G.L. Araujo, Sol. Energy Mater. Sol. Cells 43 (1996) p. 203.

    CAS  Google Scholar 

  6. A.S. Brown and M.A. Green, Prog. Photovolt. Res. Appl. 10 (2002) p. 299.

    Google Scholar 

  7. W.B. Shockley and W.T.J. Read, Phys. Rev. 87 (5) (1952) p. 835.

    CAS  Google Scholar 

  8. F. Dimroth, Phys. Status Solidi C 3 (3) (2006) p. 373.

    CAS  Google Scholar 

  9. A.W. Bett, C. Baur, F. Dimroth, J. Schöne, Mater. Res. Soc. Symp. Proc. 836 (2005) L6.4.1.

  10. M. Wanlass, P. Ahrenkiel, D. Albin, J. Carapella, A. Duda, K. Emery, D. Friedman, J. Geisz, K. Jones, A. Kibbler, J. Kiehl, S. Kurtz, W. McMahon, T. Moriarty, J. Olson, A. Ptak, M. Romero, and S. Ward, Proc. WCPEC-4 (Waikoloa, Hawaii, 2006) p. 729.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimroth, F., Kurtz, S. High-Efficiency Multijunction Solar Cells. MRS Bulletin 32, 230–235 (2007). https://doi.org/10.1557/mrs2007.27

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2007.27

Navigation